Alkaline titanium carbide (MXene) engineering ultrafine non-noble nanocatalysts toward remarkably boosting hydrogen evolution from ammonia borane hydrolysis

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Journal of Alloys and Compounds Pub Date : 2024-11-19 DOI:10.1016/j.jallcom.2024.177644
Haotian Qin, Siyuang Tang, Linlin Xu, Aosong Li, Quanjiang Lv, Jianling Dong, Luyu Liu, Xiang Ding, Xueqing Pan, Xinchun Yang, Nan Jiang, Fuzhan Song
{"title":"Alkaline titanium carbide (MXene) engineering ultrafine non-noble nanocatalysts toward remarkably boosting hydrogen evolution from ammonia borane hydrolysis","authors":"Haotian Qin, Siyuang Tang, Linlin Xu, Aosong Li, Quanjiang Lv, Jianling Dong, Luyu Liu, Xiang Ding, Xueqing Pan, Xinchun Yang, Nan Jiang, Fuzhan Song","doi":"10.1016/j.jallcom.2024.177644","DOIUrl":null,"url":null,"abstract":"The rational design of cost-effective and stable heterogeneous nanocatalysts with high activities is vital yet challenged for utilization of sustainable hydrogen fuel. Herein, we report a novel surficial alkaline functional strategy for immobilization of non-noble CuCo nanoparticles (NPs) on diamine-alkalized-functionalized Ti<sub>3</sub>C<sub>2</sub> surfaces (CuCo/PDA-Ti<sub>3</sub>C<sub>2</sub>). By virtue of coordination effect, ultrafine CuCo NPs with the size of 1.8<!-- --> <!-- -->nm were well dispersed on Ti<sub>3</sub>C<sub>2</sub> surface. Strikingly, the optimized CuCo/PDA-Ti<sub>3</sub>C<sub>2</sub> nanocatalyst presents an impressive catalytic performance toward ammonia borane hydrolysis (ABH) without any additive, with a completed conversion and a high turnover frequency (TOF) value of 71.8 mol<sub>H2</sub>mol<sub>cat</sub><sup>-1</sup>min<sup>-1</sup> at mild condition. The alkaline amine groups induced a strong support-metal synergistic interaction (SMSI) to not only regulate the localized charge distribution and electron energy levels near active sites, but also optimize the surface d center and adsorption/desorption behavior, resulting in an accelerating O-H bond cleavage in water molecular. This work presents a novel and universal strategy for developing alkaline titanium carbide (MXene)-based heterogeneous nanocatalysts for hydrogen energy society.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"106 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177644","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rational design of cost-effective and stable heterogeneous nanocatalysts with high activities is vital yet challenged for utilization of sustainable hydrogen fuel. Herein, we report a novel surficial alkaline functional strategy for immobilization of non-noble CuCo nanoparticles (NPs) on diamine-alkalized-functionalized Ti3C2 surfaces (CuCo/PDA-Ti3C2). By virtue of coordination effect, ultrafine CuCo NPs with the size of 1.8 nm were well dispersed on Ti3C2 surface. Strikingly, the optimized CuCo/PDA-Ti3C2 nanocatalyst presents an impressive catalytic performance toward ammonia borane hydrolysis (ABH) without any additive, with a completed conversion and a high turnover frequency (TOF) value of 71.8 molH2molcat-1min-1 at mild condition. The alkaline amine groups induced a strong support-metal synergistic interaction (SMSI) to not only regulate the localized charge distribution and electron energy levels near active sites, but also optimize the surface d center and adsorption/desorption behavior, resulting in an accelerating O-H bond cleavage in water molecular. This work presents a novel and universal strategy for developing alkaline titanium carbide (MXene)-based heterogeneous nanocatalysts for hydrogen energy society.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碱性碳化钛(MXene)工程超细非贵金属纳米催化剂可显著促进氨硼烷水解过程中的氢演化
合理设计具有高活性、经济高效且稳定的异质纳米催化剂对于利用可持续氢燃料至关重要,但也面临挑战。在此,我们报告了一种新颖的表面碱性功能策略,用于在二胺-碱化-功能化 Ti3C2 表面(CuCo/PDA-Ti3C2)固定非贵金属 CuCo 纳米粒子(NPs)。通过配位效应,尺寸为 1.8 nm 的超细 CuCo NPs 在 Ti3C2 表面得到了良好的分散。引人注目的是,优化后的 CuCo/PDA-Ti3C2 纳米催化剂在不添加任何添加剂的情况下,对氨水硼烷水解(ABH)具有显著的催化性能,在温和条件下可实现完全转化,且转化频率(TOF)值高达 71.8 molH2molcat-1min-1。碱性胺基团诱导了强烈的支撑-金属协同作用(SMSI),不仅调节了活性位点附近的局部电荷分布和电子能级,还优化了表面 d 中心和吸附/解吸行为,从而加速了水分子中 O-H 键的裂解。这项工作为开发基于碱性碳化钛(MXene)的异质纳米催化剂以促进氢能社会的发展提供了一种新颖而通用的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
期刊最新文献
Evolution of Ductile L12 Phase in (FeCoNi)86-Al7Ti7 High-Entropy Alloy Aging at Various Temperatures and Its Strengthening Mechanism Microstructure evolution and strain rate sensitivity of ductile Hf20Nb10Ti35Zr35 medium-entropy alloy after thermal cycling Improving the electrochemical corrosion resistance of a high-Ca heat-resistant magnesium alloy by enhancing the barrier effect of the cathodic phase skeleton Container-Free Microfluidic Chemical Reduction for Synthesizing Ultrafine Silver Powder and Fabricating Silver Paste Comparative study of wet oxidation in amorphous and crystalline Zr-Cu-Al: The effect of structural order
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1