Influence of graphene oxide and reduced graphene oxide on TiO2-reinforced flexible poly(vinyl alcohol) films for electromagnetic interference shielding
Maysa K.S. Araújo, Adriana S. Carvalho, Alexsandro R. Santos, Eduardo Padrón-Hernández, Eduardo H.L. Falcão
{"title":"Influence of graphene oxide and reduced graphene oxide on TiO2-reinforced flexible poly(vinyl alcohol) films for electromagnetic interference shielding","authors":"Maysa K.S. Araújo, Adriana S. Carvalho, Alexsandro R. Santos, Eduardo Padrón-Hernández, Eduardo H.L. Falcão","doi":"10.1016/j.jallcom.2024.177671","DOIUrl":null,"url":null,"abstract":"This study evaluates the impact of graphene oxide (GO) and reduced graphene oxide (rGO) on the structural characteristics and electromagnetic interference shielding effectiveness (EMI SE) of poly(vinyl alcohol) (PVA) films containing titanium dioxide (TiO₂). The composite films were prepared by solution casting, and their structural properties were analyzed through FTIR, electron microscopy, and X-ray diffraction. EMI SE was evaluated as a function of GO and rGO concentrations. Spectroscopic data indicated that TiO₂ and GO interact with PVA primarily through hydrogen bonding. The inclusion of TiO₂ increased the crystallinity of the films, although its interaction with PVA was not uniform. In composites containing GO, TiO₂ exhibited enhanced affinity for the polymer matrix due to the hydrophilic nature of both components. As a result, GO influenced the action of TiO₂ in the composite, leading to EMI SE values of 3.27<!-- --> <!-- -->dB/mm in the X-band and 7.28<!-- --> <!-- -->dB/mm at 9.3<!-- --> <!-- -->GHz. The addition of rGO led to reduced interaction with TiO₂ due to a lower content of oxygen-containing groups, with the higher electrical conductivity of rGO being the most prominent effect observed. rGO demonstrated a competitive effect at 1% filler and a synergistic effect at 4% filler, with EMI SE values at 9.9<!-- --> <!-- -->GHz increasing to 31.34<!-- --> <!-- -->dB/mm and 55.80<!-- --> <!-- -->dB/mm, respectively. This study shows that GO/TiO₂/PVA and rGO/TiO₂/PVA composite films exhibit promising EMI shielding properties. The different interactions between GO and rGO with TiO₂ and PVA result in distinct EMI SE mechanisms, with rGO showing superior performance. Combined with excellent mechanical flexibility and relatively low thickness, these data highlight the potential of these composite films for EMI shielding applications.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"6 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177671","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluates the impact of graphene oxide (GO) and reduced graphene oxide (rGO) on the structural characteristics and electromagnetic interference shielding effectiveness (EMI SE) of poly(vinyl alcohol) (PVA) films containing titanium dioxide (TiO₂). The composite films were prepared by solution casting, and their structural properties were analyzed through FTIR, electron microscopy, and X-ray diffraction. EMI SE was evaluated as a function of GO and rGO concentrations. Spectroscopic data indicated that TiO₂ and GO interact with PVA primarily through hydrogen bonding. The inclusion of TiO₂ increased the crystallinity of the films, although its interaction with PVA was not uniform. In composites containing GO, TiO₂ exhibited enhanced affinity for the polymer matrix due to the hydrophilic nature of both components. As a result, GO influenced the action of TiO₂ in the composite, leading to EMI SE values of 3.27 dB/mm in the X-band and 7.28 dB/mm at 9.3 GHz. The addition of rGO led to reduced interaction with TiO₂ due to a lower content of oxygen-containing groups, with the higher electrical conductivity of rGO being the most prominent effect observed. rGO demonstrated a competitive effect at 1% filler and a synergistic effect at 4% filler, with EMI SE values at 9.9 GHz increasing to 31.34 dB/mm and 55.80 dB/mm, respectively. This study shows that GO/TiO₂/PVA and rGO/TiO₂/PVA composite films exhibit promising EMI shielding properties. The different interactions between GO and rGO with TiO₂ and PVA result in distinct EMI SE mechanisms, with rGO showing superior performance. Combined with excellent mechanical flexibility and relatively low thickness, these data highlight the potential of these composite films for EMI shielding applications.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.