Outlier Detection Enhancement in Heterogeneous Environments Through a Novel Training Set Selection Framework

Yongchan Gao;Kexuan Cui;Danilo Orlando;Chen Zhang;Guisheng Liao;Lei Zuo
{"title":"Outlier Detection Enhancement in Heterogeneous Environments Through a Novel Training Set Selection Framework","authors":"Yongchan Gao;Kexuan Cui;Danilo Orlando;Chen Zhang;Guisheng Liao;Lei Zuo","doi":"10.1109/TRS.2024.3491795","DOIUrl":null,"url":null,"abstract":"Most training set selection (TSS) methods are based on data processing methods. These methods have improved the state-of-the-art in clutter suppression under heterogeneous condition; however, TSS for heterogeneous and complex environments has rarely been investigated, especially for large outliers. This problem arises in situations such as isolated elevation points, spike effects of mountains, and urban-rural interfaces in actual radar operating environments. To address such a problem, this article proposes a novel enhanced outlier detection framework that deals with TSS in the presence of an unknown number of multiple outliers. First, the design of the overall structure of the TSS framework is proposed. We decompose the actual radar returns into four components and further integrate them into the TSS framework. The proposed framework uses the statistical characteristics of the returns from the range cells as a classification criterion. A deep neural network is devised to extract these statistical characteristics for outlier detection. The loss function and learning rate selection of the proposed TSS framework are, furthermore, specified. Then, the classification model for the four signal components is presented. To validate this framework, we use a real radar dataset sampled from heterogeneous environments and characterize signals in real radar scenarios. Experimental results demonstrate that the proposed framework significantly improves the accuracy of outlier detection in comparison with the traditional heterogeneous TSS method. In addition, our framework can further distinguish the interference outliers from the target echoes.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"1160-1173"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10744601/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most training set selection (TSS) methods are based on data processing methods. These methods have improved the state-of-the-art in clutter suppression under heterogeneous condition; however, TSS for heterogeneous and complex environments has rarely been investigated, especially for large outliers. This problem arises in situations such as isolated elevation points, spike effects of mountains, and urban-rural interfaces in actual radar operating environments. To address such a problem, this article proposes a novel enhanced outlier detection framework that deals with TSS in the presence of an unknown number of multiple outliers. First, the design of the overall structure of the TSS framework is proposed. We decompose the actual radar returns into four components and further integrate them into the TSS framework. The proposed framework uses the statistical characteristics of the returns from the range cells as a classification criterion. A deep neural network is devised to extract these statistical characteristics for outlier detection. The loss function and learning rate selection of the proposed TSS framework are, furthermore, specified. Then, the classification model for the four signal components is presented. To validate this framework, we use a real radar dataset sampled from heterogeneous environments and characterize signals in real radar scenarios. Experimental results demonstrate that the proposed framework significantly improves the accuracy of outlier detection in comparison with the traditional heterogeneous TSS method. In addition, our framework can further distinguish the interference outliers from the target echoes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过新颖的训练集选择框架增强异构环境中的离群点检测能力
大多数训练集选择(TSS)方法都基于数据处理方法。这些方法提高了在异构条件下抑制杂波的先进水平;然而,针对异构和复杂环境的训练集选择方法却鲜有研究,尤其是针对大型离群值的训练集选择方法。这个问题出现在实际雷达工作环境中的孤立高程点、山峰的尖峰效应和城乡交界处等情况下。为解决这一问题,本文提出了一种新的增强型离群点检测框架,可在存在未知数量的多个离群点的情况下处理 TSS。首先,提出了 TSS 框架的整体结构设计。我们将实际雷达回波分解为四个部分,并进一步将它们整合到 TSS 框架中。所提出的框架将测距单元回波的统计特征作为分类标准。我们设计了一个深度神经网络来提取这些统计特征,用于离群点检测。此外,还规定了拟议 TSS 框架的损失函数和学习率选择。然后,介绍了四个信号成分的分类模型。为了验证这一框架,我们使用了从异构环境中采样的真实雷达数据集,并对真实雷达场景中的信号进行了特征描述。实验结果表明,与传统的异构 TSS 方法相比,所提出的框架大大提高了离群点检测的准确性。此外,我们的框架还能进一步区分干扰离群值和目标回波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrections to “Engineering Constraints and Application Regimes of Quantum Radar” Range–Doppler Resolution Enhancement of Ground-Based Radar by Data Extrapolation Technique Polarization-Agile Jamming Suppression for Dual-Polarized Digital Array Radars Identification and High-Accuracy Range Estimation With Doppler Tags in Radar Applications Stepped-Frequency PMCW Waveforms for Automotive Radar Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1