Multiple Subspace-Based Target Detection in Deterministic Interference

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-11-04 DOI:10.1109/LSP.2024.3491012
Mengru Sun;Weijian Liu;Jun Liu;Chengpeng Hao;Kefei Li
{"title":"Multiple Subspace-Based Target Detection in Deterministic Interference","authors":"Mengru Sun;Weijian Liu;Jun Liu;Chengpeng Hao;Kefei Li","doi":"10.1109/LSP.2024.3491012","DOIUrl":null,"url":null,"abstract":"In this letter, the problem of detecting a multiple subspace-based target in the presence of deterministic interference is considered. To solve the problem, we utilize the Kullback-Leibler information criterion and model order selection rules to design detection schemes. The alternative hypothesis related to the most likely signal subspace is selected from multiple alternative hypotheses, and is tested versus the null hypothesis for target detection. Numerical examples verify the effectiveness of the proposed detection schemes, which can achieve the target detection and subspace-based target classification simultaneously.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"3134-3138"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10742480/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, the problem of detecting a multiple subspace-based target in the presence of deterministic interference is considered. To solve the problem, we utilize the Kullback-Leibler information criterion and model order selection rules to design detection schemes. The alternative hypothesis related to the most likely signal subspace is selected from multiple alternative hypotheses, and is tested versus the null hypothesis for target detection. Numerical examples verify the effectiveness of the proposed detection schemes, which can achieve the target detection and subspace-based target classification simultaneously.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
确定性干扰中基于多个子空间的目标探测
在这封信中,我们考虑了在存在确定性干扰的情况下探测基于多个子空间的目标的问题。为了解决这个问题,我们利用库尔贝克-莱伯勒信息准则和模型阶次选择规则来设计检测方案。从多个可选假设中选出与最有可能的信号子空间相关的可选假设,并与目标检测的零假设进行对比测试。数值示例验证了所提检测方案的有效性,该方案可同时实现目标检测和基于子空间的目标分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Diagnosis of Parkinson's Disease Based on Hybrid Fusion Approach of Offline Handwriting Images Differentiable Duration Refinement Using Internal Division for Non-Autoregressive Text-to-Speech SoLAD: Sampling Over Latent Adapter for Few Shot Generation Robust Multi-Prototypes Aware Integration for Zero-Shot Cross-Domain Slot Filling LFSamba: Marry SAM With Mamba for Light Field Salient Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1