Precise Analysis of Covariance Identifiability for Activity Detection in Grant-Free Random Access

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-11-04 DOI:10.1109/LSP.2024.3491018
Shengsong Luo;Junjie Ma;Chongbin Xu;Xin Wang
{"title":"Precise Analysis of Covariance Identifiability for Activity Detection in Grant-Free Random Access","authors":"Shengsong Luo;Junjie Ma;Chongbin Xu;Xin Wang","doi":"10.1109/LSP.2024.3491018","DOIUrl":null,"url":null,"abstract":"We consider the identifiability issue of maximum-likelihood based activity detection in massive MIMO-based grant-free random access. An intriguing observation by (Chen et al., 2022) indicates that the identifiability undergoes a phase transition for commonly-used random user signatures as \n<inline-formula><tex-math>$L^{2}$</tex-math></inline-formula>\n, \n<inline-formula><tex-math>$N$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>$K$</tex-math></inline-formula>\n tend to infinity with fixed ratios, where \n<inline-formula><tex-math>$L$</tex-math></inline-formula>\n, \n<inline-formula><tex-math>$N$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>$K$</tex-math></inline-formula>\n denote the user signature length, the total number of users, and the number of active users, respectively. In this letter, we provide a precise analytical characterization of the phase transition based on a spectral universality conjecture. Numerical results demonstrate excellent agreement between our theoretical predictions and the empirical phase transitions.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"3184-3188"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10742481/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the identifiability issue of maximum-likelihood based activity detection in massive MIMO-based grant-free random access. An intriguing observation by (Chen et al., 2022) indicates that the identifiability undergoes a phase transition for commonly-used random user signatures as $L^{2}$ , $N$ and $K$ tend to infinity with fixed ratios, where $L$ , $N$ and $K$ denote the user signature length, the total number of users, and the number of active users, respectively. In this letter, we provide a precise analytical characterization of the phase transition based on a spectral universality conjecture. Numerical results demonstrate excellent agreement between our theoretical predictions and the empirical phase transitions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无赠予随机存取中活动检测的协方差可识别性精确分析
我们考虑了在基于大规模多输入多输出(MIMO)的免授权随机接入中基于最大似然的活动检测的可识别性问题。Chen等人,2022)的一个有趣的观察结果表明,对于常用的随机用户签名,当$L^{2}$、$N$和$K$以固定比率趋于无穷大时,可识别性会发生相变,其中$L$、$N$和$K$分别表示用户签名长度、用户总数和活动用户数。在这封信中,我们根据频谱普遍性猜想对相变进行了精确的分析描述。数值结果表明,我们的理论预测与经验相变非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Diagnosis of Parkinson's Disease Based on Hybrid Fusion Approach of Offline Handwriting Images Differentiable Duration Refinement Using Internal Division for Non-Autoregressive Text-to-Speech SoLAD: Sampling Over Latent Adapter for Few Shot Generation Robust Multi-Prototypes Aware Integration for Zero-Shot Cross-Domain Slot Filling LFSamba: Marry SAM With Mamba for Light Field Salient Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1