Think Step by Step: Chain-of-Gesture Prompting for Error Detection in Robotic Surgical Videos

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-11-11 DOI:10.1109/LRA.2024.3495452
Zhimin Shao;Jialang Xu;Danail Stoyanov;Evangelos B. Mazomenos;Yueming Jin
{"title":"Think Step by Step: Chain-of-Gesture Prompting for Error Detection in Robotic Surgical Videos","authors":"Zhimin Shao;Jialang Xu;Danail Stoyanov;Evangelos B. Mazomenos;Yueming Jin","doi":"10.1109/LRA.2024.3495452","DOIUrl":null,"url":null,"abstract":"Despite advancements in robotic systems and surgical data science, ensuring safe execution in robot-assisted minimally invasive surgery (RMIS) remains challenging. Current methods for surgical error detection typically involve two parts: identifying gestures and then detecting errors within each gesture clip. These methods often overlook the rich contextual and semantic information inherent in surgical videos, with limited performance due to reliance on accurate gesture identification. Inspired by the chain-of-thought prompting in natural language processing, this letter presents a novel and real-time end-to-end error detection framework, Chain-of-Gesture (COG) prompting, integrating contextual information from surgical videos step by step. This encompasses two reasoning modules that simulate expert surgeons' decision-making: a Gestural-Visual Reasoning module using transformer and attention architectures for gesture prompting and a Multi-Scale Temporal Reasoning module employing a multi-stage temporal convolutional network with slow and fast paths for temporal information extraction. We validate our method on the JIGSAWS dataset and show improvements over the state-of-the-art, achieving 4.6% higher F1 score, 4.6% higher Accuracy, and 5.9% higher Jaccard index, with an average frame processing time of 6.69 milliseconds. This demonstrates our approach's potential to enhance RMIS safety and surgical education efficacy.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11513-11520"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10750058/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite advancements in robotic systems and surgical data science, ensuring safe execution in robot-assisted minimally invasive surgery (RMIS) remains challenging. Current methods for surgical error detection typically involve two parts: identifying gestures and then detecting errors within each gesture clip. These methods often overlook the rich contextual and semantic information inherent in surgical videos, with limited performance due to reliance on accurate gesture identification. Inspired by the chain-of-thought prompting in natural language processing, this letter presents a novel and real-time end-to-end error detection framework, Chain-of-Gesture (COG) prompting, integrating contextual information from surgical videos step by step. This encompasses two reasoning modules that simulate expert surgeons' decision-making: a Gestural-Visual Reasoning module using transformer and attention architectures for gesture prompting and a Multi-Scale Temporal Reasoning module employing a multi-stage temporal convolutional network with slow and fast paths for temporal information extraction. We validate our method on the JIGSAWS dataset and show improvements over the state-of-the-art, achieving 4.6% higher F1 score, 4.6% higher Accuracy, and 5.9% higher Jaccard index, with an average frame processing time of 6.69 milliseconds. This demonstrates our approach's potential to enhance RMIS safety and surgical education efficacy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逐步思考:机器人手术视频中的错误检测手势链提示
尽管机器人系统和手术数据科学取得了进步,但确保机器人辅助微创手术(RMIS)的安全实施仍然充满挑战。目前的手术错误检测方法通常包括两个部分:识别手势,然后检测每个手势片段中的错误。这些方法往往忽略了手术视频中固有的丰富上下文和语义信息,由于依赖于准确的手势识别,因此性能有限。受自然语言处理中的 "思维链提示 "启发,这封信提出了一个新颖、实时的端到端错误检测框架--"手势链(COG)提示",逐步整合手术视频中的上下文信息。其中包括两个模拟外科医生决策的推理模块:一个是手势-视觉推理模块,使用变换器和注意力架构进行手势提示;另一个是多尺度时态推理模块,使用多级时态卷积网络的慢速和快速路径进行时态信息提取。我们在 JIGSAWS 数据集上验证了我们的方法,结果表明我们的方法比最先进的方法有所改进,F1 分数提高了 4.6%,准确率提高了 4.6%,Jaccard 指数提高了 5.9%,平均帧处理时间为 6.69 毫秒。这表明我们的方法具有提高 RMIS 安全性和手术教育效果的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Correction To: “Design Models and Performance Analysis for a Novel Shape Memory Alloy-Actuated Wearable Hand Exoskeleton for Rehabilitation” NavTr: Object-Goal Navigation With Learnable Transformer Queries GSFusion: Online RGB-D Mapping Where Gaussian Splatting Meets TSDF Fusion RANSAC Back to SOTA: A Two-Stage Consensus Filtering for Real-Time 3D Registration Sim-to-Real Transfer of Automatic Extinguishing Strategy for Firefighting Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1