Kuifeng Luan;Xueyan Zhao;Wei Kong;Tao Chen;Huan Xie;Xiangfeng Liu;Fengxiang Wang
{"title":"A Novel Ray Tracing Approach for Bathymetry Using UAV-Based Dual-Polarization Photon-Counting LiDAR","authors":"Kuifeng Luan;Xueyan Zhao;Wei Kong;Tao Chen;Huan Xie;Xiangfeng Liu;Fengxiang Wang","doi":"10.1109/JSTARS.2024.3487584","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicle-based photon-counting ocean bathymetric light detection and ranging (LiDAR) systems rapidly acquire topographic data from islands, reefs, and shallow waters. However, the bathymetric ability of seabed topography is affected by high backscattering from the sea surface owing to its proximity, and no suitable imaging models are available. Herein, we designed a novel ray approach for bathymetry based on a dual-polarization photon-counting LiDAR. Based on the transmission characteristics of light, a dual-polarization channel strategy was proposed, and the data from two channels in vegetation, sand, and shallow and medium-depth waters were compared. Based on the ray tracing method, imaging models of the water surface and depth for light and small photon-counting LiDAR were established. Shallow-water experiments were conducted near Jiajing Island, Hainan, China, to verify the accuracy of the LiDAR bathymetry data by shipborne single-beam sounding data. The results indicate that the vertical polarization channel data had a high signal-to-noise ratio in the terrestrial part, while the horizontal polarization channel had a better water surface backscatter suppression effect and strong bathymetry ability in the water part. The detectable depth was approximately 8 m in the experimental area. The MAEs of the depth values of the LiDAR point cloud before and after refraction correction relative to the single beam depth measurement values were 1.08 and 0.09 m, respectively. And the RMSEs before and after correction were 1.12 and 0.11 m, respectively.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"20284-20303"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10737662","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10737662/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned aerial vehicle-based photon-counting ocean bathymetric light detection and ranging (LiDAR) systems rapidly acquire topographic data from islands, reefs, and shallow waters. However, the bathymetric ability of seabed topography is affected by high backscattering from the sea surface owing to its proximity, and no suitable imaging models are available. Herein, we designed a novel ray approach for bathymetry based on a dual-polarization photon-counting LiDAR. Based on the transmission characteristics of light, a dual-polarization channel strategy was proposed, and the data from two channels in vegetation, sand, and shallow and medium-depth waters were compared. Based on the ray tracing method, imaging models of the water surface and depth for light and small photon-counting LiDAR were established. Shallow-water experiments were conducted near Jiajing Island, Hainan, China, to verify the accuracy of the LiDAR bathymetry data by shipborne single-beam sounding data. The results indicate that the vertical polarization channel data had a high signal-to-noise ratio in the terrestrial part, while the horizontal polarization channel had a better water surface backscatter suppression effect and strong bathymetry ability in the water part. The detectable depth was approximately 8 m in the experimental area. The MAEs of the depth values of the LiDAR point cloud before and after refraction correction relative to the single beam depth measurement values were 1.08 and 0.09 m, respectively. And the RMSEs before and after correction were 1.12 and 0.11 m, respectively.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.