Fine-tuning of core–shell 1D nanoparticles for thermally conductive, yet electrically insulating, 3D-printable polymer nanocomposites†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Chemistry Frontiers Pub Date : 2024-10-03 DOI:10.1039/D4QM00520A
Antoine Bodin, Thomas Pietri, Caroline Celle and Jean-Pierre Simonato
{"title":"Fine-tuning of core–shell 1D nanoparticles for thermally conductive, yet electrically insulating, 3D-printable polymer nanocomposites†","authors":"Antoine Bodin, Thomas Pietri, Caroline Celle and Jean-Pierre Simonato","doi":"10.1039/D4QM00520A","DOIUrl":null,"url":null,"abstract":"<p >Core–shell nanostructures are particularly interesting for the development of dual-property nanofillers for nanocomposites. In this study, advanced materials compatible with the commonly used fused deposition modeling (FDM) 3D printing technique are reported for heat dissipation applications. Core–shell nanowires based on a highly thermally conductive silver core coated with an electrically insulating silica shell are investigated. The heat dissipation performance of polycarbonate nanocomposites is analyzed using a comprehensive set of thermal, electrical, mechanical, and rheological characterization studies to determine the optimal silica nanolayer thickness. We demonstrate that these core–shell nanofillers give access to both high thermal conductivity of up to 2.08 ± 0.05 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small>, and electrically insulating behavior (electrical resistivity &gt;10<small><sup>12</sup></small> Ω cm) at only 3 vol% loading, while retaining very good mechanical strength. The high dispersion and interfacial cohesion of the nanomaterials with the matrix play a key role in achieving these performances. Moreover, thanks to the alignment of the 1D nanofillers during the FDM printing process, the thermal conductivity of the PC nanocomposite reaches an unprecedented value of 3.48 ± 0.06 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> in the printing direction, <em>i.e.</em> a fifteen-fold increase over the thermal conductivity of neat PC.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 23","pages":" 3949-3961"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/qm/d4qm00520a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00520a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Core–shell nanostructures are particularly interesting for the development of dual-property nanofillers for nanocomposites. In this study, advanced materials compatible with the commonly used fused deposition modeling (FDM) 3D printing technique are reported for heat dissipation applications. Core–shell nanowires based on a highly thermally conductive silver core coated with an electrically insulating silica shell are investigated. The heat dissipation performance of polycarbonate nanocomposites is analyzed using a comprehensive set of thermal, electrical, mechanical, and rheological characterization studies to determine the optimal silica nanolayer thickness. We demonstrate that these core–shell nanofillers give access to both high thermal conductivity of up to 2.08 ± 0.05 W m−1 K−1, and electrically insulating behavior (electrical resistivity >1012 Ω cm) at only 3 vol% loading, while retaining very good mechanical strength. The high dispersion and interfacial cohesion of the nanomaterials with the matrix play a key role in achieving these performances. Moreover, thanks to the alignment of the 1D nanofillers during the FDM printing process, the thermal conductivity of the PC nanocomposite reaches an unprecedented value of 3.48 ± 0.06 W m−1 K−1 in the printing direction, i.e. a fifteen-fold increase over the thermal conductivity of neat PC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微调核壳 1D 纳米粒子,实现导热但绝缘的 3D 可打印聚合物纳米复合材料†。
核壳纳米结构对于开发用于纳米复合材料的双性能纳米填料尤为重要。本研究报告了与常用的熔融沉积建模(FDM)三维打印技术兼容的先进材料在散热方面的应用。研究了基于高导热银核和电绝缘二氧化硅外壳的核壳纳米线。通过对热学、电学、机械和流变学特性的综合研究,分析了聚碳酸酯纳米复合材料的散热性能,以确定最佳的二氧化硅纳米层厚度。我们证明,这些核壳纳米填料只需 3 Vol% 的负载量就能获得高达 2.08 ± 0.05 W m-1 K-1 的高热导率和电绝缘性能(电阻率 >1012 Ω cm),同时保持非常好的机械强度。纳米材料与基体的高分散性和界面内聚力在实现这些性能方面发挥了关键作用。此外,由于一维纳米填料在 FDM 印刷过程中的排列,PC 纳米复合材料在印刷方向上的热导率达到了前所未有的 3.48 ± 0.06 W m-1 K-1,即比纯 PC 的热导率提高了 15 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
期刊最新文献
Back cover Back cover New heater@luminescent thermometer nano-objects: Prussian blue core@silica shell loaded with a β-diketonate Tb3+/Eu3+ complex† Multiscale engineering of anode catalyst layers in proton exchange membrane water electrolyzers Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1