{"title":"Linear scaling relationships in homogeneous photoredox catalysis†","authors":"Kareesa J. Kron and Shaama Mallikarjun Sharada","doi":"10.1039/D4RE00419A","DOIUrl":null,"url":null,"abstract":"<p >This work investigates two competing pathways for the terphenyl radical anion in the photoredox catalytic cycle for CO<small><sub>2</sub></small> reduction – the desired electron transfer to CO<small><sub>2</sub></small> and the undesired carboxylation and deactivation of the terphenyl catalyst. A linear relationship is identified between the energetics of the two pathways when trends are examined <em>via p</em>-substitutions to the three isomeric forms of terphenyl. Analogous to linear scaling relationships in heterogeneous catalysis and electrocatalysis, this correlation highlights intrinsic bounds on catalyst performance towards photoredox CO<small><sub>2</sub></small> reduction.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3105-3109"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00419a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work investigates two competing pathways for the terphenyl radical anion in the photoredox catalytic cycle for CO2 reduction – the desired electron transfer to CO2 and the undesired carboxylation and deactivation of the terphenyl catalyst. A linear relationship is identified between the energetics of the two pathways when trends are examined via p-substitutions to the three isomeric forms of terphenyl. Analogous to linear scaling relationships in heterogeneous catalysis and electrocatalysis, this correlation highlights intrinsic bounds on catalyst performance towards photoredox CO2 reduction.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.