{"title":"A novel durable and soft cotton flame retardant containing phosphonamide phosphate ester with ammonium phosphonate group","authors":"Mengxiao Liang, Yonghua Lu, Hao Zhou, Shuo Diao, Qian Tang, Yan Yang, Guangxian Zhang","doi":"10.1007/s10570-024-06219-7","DOIUrl":null,"url":null,"abstract":"<div><p>A novel type of durable flame retardant applied to cotton fabrics, phosphoacetamide phosphate ammonium phosphate (PAPAP), was synthesized. The PAPAP structure characterization was determined via nuclear magnetism resonance, X-ray photoelectron spectroscopy and Fourier transform infrared (FTIR). Scanning electron microscopy and X-ray diffraction revealed that PAPAP diffused into fibers and did not significantly influence their morphology and crystal structure. The FTIR analysis and wash fastness of samples suggested that PAPAP was bound to cellulose through N–(P = O)–O–C and O–(P = O)–O–C covalent bonds. The presence of p-π conjugated effect in the (P = O)–N group of PAPAP strengthen the stability of the N–(P = O)–O–C bond, resulting in highly durable flame resistance in the finished cotton fabrics, which is supported by the fact that the treatment of cotton with 30 wt% PAPAP (30%FRC) exhibited an LOI value of 54.7%. Even after undergoing 50 washing cycles based on the AATCC 61–2013 3A standard, 30%FRC maintained an LOI value of 44.1%. Thermogravimetry (TG), TG–FTIR, cone calorimetry, and char residue analyses indicated that PAPAP modified the thermal decomposition pathway of cellulose, reduced the generation of flammable gases and promoted char formation, effectively resisting fabric fires. The whiteness, breaking strength and comfortability of the treated cotton fabrics were well sustained, and their softness was very well, even softer than that of control cotton. In conclusion, the introduction of N-P(= O) group and phosphate ester groups into a flame-retardant molecule effectively improved the durability and softness of finished cotton fabrics.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"31 17","pages":"10531 - 10549"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06219-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
A novel type of durable flame retardant applied to cotton fabrics, phosphoacetamide phosphate ammonium phosphate (PAPAP), was synthesized. The PAPAP structure characterization was determined via nuclear magnetism resonance, X-ray photoelectron spectroscopy and Fourier transform infrared (FTIR). Scanning electron microscopy and X-ray diffraction revealed that PAPAP diffused into fibers and did not significantly influence their morphology and crystal structure. The FTIR analysis and wash fastness of samples suggested that PAPAP was bound to cellulose through N–(P = O)–O–C and O–(P = O)–O–C covalent bonds. The presence of p-π conjugated effect in the (P = O)–N group of PAPAP strengthen the stability of the N–(P = O)–O–C bond, resulting in highly durable flame resistance in the finished cotton fabrics, which is supported by the fact that the treatment of cotton with 30 wt% PAPAP (30%FRC) exhibited an LOI value of 54.7%. Even after undergoing 50 washing cycles based on the AATCC 61–2013 3A standard, 30%FRC maintained an LOI value of 44.1%. Thermogravimetry (TG), TG–FTIR, cone calorimetry, and char residue analyses indicated that PAPAP modified the thermal decomposition pathway of cellulose, reduced the generation of flammable gases and promoted char formation, effectively resisting fabric fires. The whiteness, breaking strength and comfortability of the treated cotton fabrics were well sustained, and their softness was very well, even softer than that of control cotton. In conclusion, the introduction of N-P(= O) group and phosphate ester groups into a flame-retardant molecule effectively improved the durability and softness of finished cotton fabrics.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.