Effect of Graphene Oxide on the Permeability of Asymmetric Polysulfone Membranes

IF 0.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Russian Journal of Physical Chemistry A Pub Date : 2024-11-18 DOI:10.1134/S0036024424702236
A. S. Gizzatov, M. A. Petrov, Yu. S. Eremin, A. M. Grekhov
{"title":"Effect of Graphene Oxide on the Permeability of Asymmetric Polysulfone Membranes","authors":"A. S. Gizzatov,&nbsp;M. A. Petrov,&nbsp;Yu. S. Eremin,&nbsp;A. M. Grekhov","doi":"10.1134/S0036024424702236","DOIUrl":null,"url":null,"abstract":"<p>Membranes have been prepared from polysulfone and graphene oxide with mass concentrations from 0 to 0.4%. A series of experiments were conducted to study the permeability of the obtained samples at pressures of 10, 15, and 20 atm. The experimental time dependences of the permeated water volume at a constant pressure were obtained. The dependence of the membrane permeability on the graphene oxide concentration and pressure was calculated. Conclusions were drawn about the influence of graphene oxide concentration and pressure on the permeability of the samples.</p>","PeriodicalId":767,"journal":{"name":"Russian Journal of Physical Chemistry A","volume":"98 12","pages":"2921 - 2925"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry A","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0036024424702236","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Membranes have been prepared from polysulfone and graphene oxide with mass concentrations from 0 to 0.4%. A series of experiments were conducted to study the permeability of the obtained samples at pressures of 10, 15, and 20 atm. The experimental time dependences of the permeated water volume at a constant pressure were obtained. The dependence of the membrane permeability on the graphene oxide concentration and pressure was calculated. Conclusions were drawn about the influence of graphene oxide concentration and pressure on the permeability of the samples.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化石墨烯对不对称聚砜膜渗透性的影响
用聚砜和氧化石墨烯制备了质量浓度为 0% 至 0.4% 的薄膜。为了研究获得的样品在 10、15 和 20 atm 压力下的渗透性,进行了一系列实验。实验得出了恒定压力下渗透水量的时间相关性。计算了膜渗透性与氧化石墨烯浓度和压力的关系。得出了氧化石墨烯浓度和压力对样品渗透性影响的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
376
审稿时长
5.1 months
期刊介绍: Russian Journal of Physical Chemistry A. Focus on Chemistry (Zhurnal Fizicheskoi Khimii), founded in 1930, offers a comprehensive review of theoretical and experimental research from the Russian Academy of Sciences, leading research and academic centers from Russia and from all over the world. Articles are devoted to chemical thermodynamics and thermochemistry, biophysical chemistry, photochemistry and magnetochemistry, materials structure, quantum chemistry, physical chemistry of nanomaterials and solutions, surface phenomena and adsorption, and methods and techniques of physicochemical studies.
期刊最新文献
Remote Ignition of an Open Gas Well Fountain Using Laser Radiation Effect of Graphene Oxide on the Permeability of Asymmetric Polysulfone Membranes Erratum to: Predicting the Thermodynamic Characteristics of New Products of N,N-Dimethylhydrazine Transformation in the Gas Phase Mechanism of the Cojoint Effect of Components of the Ni/HMOR/\({\text{SO}}_{4}^{{2 - }}\)–ZrO2 Catalytic System on the Hydroconversion of Aromatic Hydrocarbons SILP Type Catalyst Based on H3PMo12O40: Composition of Heteropolyanions According to Mass Spectrometry Data and Activity in Oxidation of Sulfur-Containing Substrates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1