Ecological Health Assessments, based on Chemical Pollution and the Multimetric Fish Model, in a Temperate Monsoon River and their Spatiotemporal Variability
Thet Thet Khaing, Namsrai Jargal, Ji Yoon Kim, Kwang-Guk An
{"title":"Ecological Health Assessments, based on Chemical Pollution and the Multimetric Fish Model, in a Temperate Monsoon River and their Spatiotemporal Variability","authors":"Thet Thet Khaing, Namsrai Jargal, Ji Yoon Kim, Kwang-Guk An","doi":"10.1007/s11270-024-07624-1","DOIUrl":null,"url":null,"abstract":"<div><p>Longitudinal and seasonal physiochemical gradients were evaluated in a temperate monsoon river along with functional traits and their links to biological health indicators and status. A 10-year dataset of water quality and fish monitoring data from five sampling sites was used to assess the river health. The multimetric water pollution index (mWPI) and fish-based index of biotic integrity (mIBI-F) were applied to the monsoon river, along with an ordination analysis of fish communities. Significant increases in nutrients, organic matter, ionic contents, and chlorophyll-<i>a</i> were evident at the sites near pollution sources. The summer monsoon exacerbated these conditions, leading to very poor chemical health at middle reach and downstream sites. Although the chemical health improved slightly in autumn, conditions remained poor at downstream sites. Fish trait indicators showed down river declines in species richness, increases in tolerant species, and a proportional shift towards omnivorous species, reflecting ecological stress and deterioration. The relative abundance of invasive alien species increased post-monsoon, particularly at downstream sites, reflecting heightened biological stress. The mIBI-F assessment revealed a decline in biological health at downstream sites, that was strongly correlated with chemical health (R<sup>2</sup> = 0.61, <i>p</i> < 0.001). Ordination and regression analyses revealed significant relations between guild-based fish composition and chemical health, influenced by both pollution gradients and seasonal changes. These findings highlight the risks to river health due to agricultural and urban runoff, along with discharge from wastewater treatment plants linked to large industries and metropolitan sewage.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"235 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11270-024-07624-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07624-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Longitudinal and seasonal physiochemical gradients were evaluated in a temperate monsoon river along with functional traits and their links to biological health indicators and status. A 10-year dataset of water quality and fish monitoring data from five sampling sites was used to assess the river health. The multimetric water pollution index (mWPI) and fish-based index of biotic integrity (mIBI-F) were applied to the monsoon river, along with an ordination analysis of fish communities. Significant increases in nutrients, organic matter, ionic contents, and chlorophyll-a were evident at the sites near pollution sources. The summer monsoon exacerbated these conditions, leading to very poor chemical health at middle reach and downstream sites. Although the chemical health improved slightly in autumn, conditions remained poor at downstream sites. Fish trait indicators showed down river declines in species richness, increases in tolerant species, and a proportional shift towards omnivorous species, reflecting ecological stress and deterioration. The relative abundance of invasive alien species increased post-monsoon, particularly at downstream sites, reflecting heightened biological stress. The mIBI-F assessment revealed a decline in biological health at downstream sites, that was strongly correlated with chemical health (R2 = 0.61, p < 0.001). Ordination and regression analyses revealed significant relations between guild-based fish composition and chemical health, influenced by both pollution gradients and seasonal changes. These findings highlight the risks to river health due to agricultural and urban runoff, along with discharge from wastewater treatment plants linked to large industries and metropolitan sewage.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.