A Novel Methodology for the Transformer Winding Equivalent Ladder Network Circuit Parameters Identification by Employing the Frequency-Domain and Population Based Method

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Russian Journal of Nondestructive Testing Pub Date : 2024-11-18 DOI:10.1134/S1061830924602186
Abdallah Chanane, Hamza Houassine
{"title":"A Novel Methodology for the Transformer Winding Equivalent Ladder Network Circuit Parameters Identification by Employing the Frequency-Domain and Population Based Method","authors":"Abdallah Chanane,&nbsp;Hamza Houassine","doi":"10.1134/S1061830924602186","DOIUrl":null,"url":null,"abstract":"<p>Frequency response analysis (FRA) is the widely used technique for diagnosis of power transformer winding. Previous works in the field of FRA have steer to the standardization of its measurements procedure. To date, there is no reliable standard code for the interpretation of FRA results. In this context, this paper proposes a new parametric method to synthesis the High frequency electrical ladder network circuit (HF-ELNC) of the transformer winding. Initially, a nondestructive process is applied to extract three main winding parameters. Mainly, the shunt-series capacitances and the total equivalent inductance basing on the frequency response data from the winding terminal. To this end, the proposed continuous-time state–space model is converted into a gain-numerator-denominator form. After that, the derived matrix equations are iteratively estimated by population-based algorithm using enhanced logistic choatic marine predator algorithm (ELCMPA), from where, three objective functions are considered in the model of identification including the capacitances, the inductances and the resistances. As well, classical methods such as finite elements or analytical formulas require design winding specifications. In this study, instead of winding geometry knowledge, the proposed method certifies a unique, physically and mutually coupled HF-ELNC. The accuracy of the proposed method is validated through case study of a real transformer winding.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":"60 8","pages":"921 - 934"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830924602186","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Frequency response analysis (FRA) is the widely used technique for diagnosis of power transformer winding. Previous works in the field of FRA have steer to the standardization of its measurements procedure. To date, there is no reliable standard code for the interpretation of FRA results. In this context, this paper proposes a new parametric method to synthesis the High frequency electrical ladder network circuit (HF-ELNC) of the transformer winding. Initially, a nondestructive process is applied to extract three main winding parameters. Mainly, the shunt-series capacitances and the total equivalent inductance basing on the frequency response data from the winding terminal. To this end, the proposed continuous-time state–space model is converted into a gain-numerator-denominator form. After that, the derived matrix equations are iteratively estimated by population-based algorithm using enhanced logistic choatic marine predator algorithm (ELCMPA), from where, three objective functions are considered in the model of identification including the capacitances, the inductances and the resistances. As well, classical methods such as finite elements or analytical formulas require design winding specifications. In this study, instead of winding geometry knowledge, the proposed method certifies a unique, physically and mutually coupled HF-ELNC. The accuracy of the proposed method is validated through case study of a real transformer winding.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于频域和群体的变压器绕组等效梯形网络电路参数识别新方法
频率响应分析(FRA)是广泛应用于电力变压器绕组诊断的技术。以往在 FRA 领域开展的工作促进了其测量程序的标准化。迄今为止,还没有可靠的标准代码来解释 FRA 结果。在此背景下,本文提出了一种新的参数法来合成变压器绕组的高频电气梯形网络电路(HF-ELNC)。首先,采用无损工艺提取三个主要绕组参数。主要是基于绕组终端频率响应数据的并联-串联电容和总等效电感。为此,将所提出的连续时间状态空间模型转换为增益-分母-分母形式。之后,利用增强型逻辑选择海洋捕食者算法(ELCMPA),通过基于种群的算法对得出的矩阵方程进行迭代估计,其中,识别模型中考虑了三个目标函数,包括电容、电感和电阻。此外,有限元或分析公式等经典方法需要设计绕组规格。在本研究中,所提出的方法不需要了解绕组的几何形状,而是对独特的、物理上相互耦合的高频-ELNC 进行认证。通过对实际变压器绕组的案例研究,验证了所提方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Journal of Nondestructive Testing
Russian Journal of Nondestructive Testing 工程技术-材料科学:表征与测试
CiteScore
1.60
自引率
44.40%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).
期刊最新文献
Laser Ultrasonic Measurements for Generation and Detection of Lateral Waves in a Solid for Surface Defect Inspection Sparse Optimal Design of Ultrasonic Phased Array for Efficient DMAS Imaging Developing a Method for Assessing the Degree of Hydrogenation of VT1-0 Titanium Alloy by the Acoustic Method Layered Composite Hydrogenated Films of Zirconium and Niobium: Production Method and Testing Using Thermo EMF (Thermoelectric Method) Evaluating Efficiency of Foreign Object Detection Technology Based on the Use of Passive Infrared Thermography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1