{"title":"Exploring the chemistry of metakaolin-based geopolymers","authors":"Krishnan Dhanalakshmi, Seenipeyathevar Meenakshi Sudarvizhi, Prakash Arul Jose, Muniraj Dhanasekaran","doi":"10.1007/s10965-024-04170-6","DOIUrl":null,"url":null,"abstract":"<div><p>This experimental study investigates the impact of different silicon-to-alumina (Si/Al) ratios on geopolymers synthesized from metakaolin. Various ratios of Si/Al (1:1, 1.5:1, 2:1, 3:1, 4:1, and 5:1) were employed, nano-silica was the source material to alter the Si ratio. Microstructure and strength were analysed using SEM, XRD, NMR, and compressive strength testing Geopolymerization, a sustainable material synthesis process, was investigated using FTIR spectroscopy and computational modeling. The dissolution rates of aluminum and silicon molecules, as well as the formation of N-A-S-H gel, were studied. Results revealed that a Si/Al ratio of 2:1 significantly enhanced the dissolution of silicon and aluminum, leading to the formation of Si-O-T bonds and superior compressive strength. Computational analysis confirmed that the mechanical performance was primarily attributed to the formation of N-A-S-H gel, rather than zeolitic nuclei or silicate derivatives. These findings provide valuable insights for the application of geopolymerization in valorizing mine tailings, which often exhibit high Si/Al ratios.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"31 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04170-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This experimental study investigates the impact of different silicon-to-alumina (Si/Al) ratios on geopolymers synthesized from metakaolin. Various ratios of Si/Al (1:1, 1.5:1, 2:1, 3:1, 4:1, and 5:1) were employed, nano-silica was the source material to alter the Si ratio. Microstructure and strength were analysed using SEM, XRD, NMR, and compressive strength testing Geopolymerization, a sustainable material synthesis process, was investigated using FTIR spectroscopy and computational modeling. The dissolution rates of aluminum and silicon molecules, as well as the formation of N-A-S-H gel, were studied. Results revealed that a Si/Al ratio of 2:1 significantly enhanced the dissolution of silicon and aluminum, leading to the formation of Si-O-T bonds and superior compressive strength. Computational analysis confirmed that the mechanical performance was primarily attributed to the formation of N-A-S-H gel, rather than zeolitic nuclei or silicate derivatives. These findings provide valuable insights for the application of geopolymerization in valorizing mine tailings, which often exhibit high Si/Al ratios.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.