{"title":"Is a photon ring invariably a closed structure?","authors":"Xiangyu Wang, Xiaobao Wang, Hai-Qing Zhang, Minyong Guo","doi":"10.1140/epjc/s10052-024-13527-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigate the image of a rotating compact object (CO) illuminated by a geometrically thin, optically thin disk on the equatorial plane. As the radius of the CO’s surface fluctuates, the CO may partially or entirely obscure the photon region. We observe that the perceived photon ring may exhibit discontinuities, deviating from a closed structure, and may even disappear entirely. We find that the disruption and disappearance of the photon ring are dependent on the observational angle-a novel phenomenon not previously observed in black hole imaging studies. Our study reveals that while the factors influencing this unique photon ring phenomenon are diverse and the outcomes complex, we can provide a clear and comprehensive explanation of the physical essence and variation trends of this phenomenon. We do this by introducing and analyzing the properties and interrelationships of three characteristic functions, <span>\\(\\tilde{\\eta }\\)</span>, <span>\\(\\eta _o\\)</span>, and <span>\\(\\eta _s\\)</span> related to the photon impact parameters. Additionally, our analysis of the intensity cuts and inner shadows of the images uncovers patterns that differ significantly from the shadow curve.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13527-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13527-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigate the image of a rotating compact object (CO) illuminated by a geometrically thin, optically thin disk on the equatorial plane. As the radius of the CO’s surface fluctuates, the CO may partially or entirely obscure the photon region. We observe that the perceived photon ring may exhibit discontinuities, deviating from a closed structure, and may even disappear entirely. We find that the disruption and disappearance of the photon ring are dependent on the observational angle-a novel phenomenon not previously observed in black hole imaging studies. Our study reveals that while the factors influencing this unique photon ring phenomenon are diverse and the outcomes complex, we can provide a clear and comprehensive explanation of the physical essence and variation trends of this phenomenon. We do this by introducing and analyzing the properties and interrelationships of three characteristic functions, \(\tilde{\eta }\), \(\eta _o\), and \(\eta _s\) related to the photon impact parameters. Additionally, our analysis of the intensity cuts and inner shadows of the images uncovers patterns that differ significantly from the shadow curve.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.