Alfio Grillo, Andrea Pastore, Salvatore Di Stefano
{"title":"An Approach to Growth Mechanics Based on the Analytical Mechanics of Nonholonomic Systems","authors":"Alfio Grillo, Andrea Pastore, Salvatore Di Stefano","doi":"10.1007/s10659-024-10092-7","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by the convenience, in some biomechanical problems, of interpreting the mass balance law of a growing medium as a nonholonomic constraint on the time rate of a structural descriptor known as growth tensor, we employ some results of analytical mechanics to show that such constraint can be studied variationally. Our purpose is to move a step forward in the formulation of a field theory of the mechanics of volumetric growth by defining a Lagrangian function that incorporates the nonholonomic constraint of the mass balance. The knowledge of such Lagrangian function permits, on the one hand, to deduce the dynamic equations of a growing medium as the result of a variational procedure known as Hamilton–Suslov Principle (clearly, up to non-potential generalized forces that are accounted for by extending this procedure), and, on the other hand, to study the symmetries and conservation laws that pertain to a given growth problem. While this second issue is not investigated in this work, we focus on the first one, and we show that the Euler–Lagrange equations of the considered growing medium, which describe both its motion and the evolution of the growth tensor, can be obtained by reformulating a variational method developed by other authors. We discuss the main features of this method in the context of growth mechanics, and we show how our procedure is able to improve them.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10659-024-10092-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-024-10092-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by the convenience, in some biomechanical problems, of interpreting the mass balance law of a growing medium as a nonholonomic constraint on the time rate of a structural descriptor known as growth tensor, we employ some results of analytical mechanics to show that such constraint can be studied variationally. Our purpose is to move a step forward in the formulation of a field theory of the mechanics of volumetric growth by defining a Lagrangian function that incorporates the nonholonomic constraint of the mass balance. The knowledge of such Lagrangian function permits, on the one hand, to deduce the dynamic equations of a growing medium as the result of a variational procedure known as Hamilton–Suslov Principle (clearly, up to non-potential generalized forces that are accounted for by extending this procedure), and, on the other hand, to study the symmetries and conservation laws that pertain to a given growth problem. While this second issue is not investigated in this work, we focus on the first one, and we show that the Euler–Lagrange equations of the considered growing medium, which describe both its motion and the evolution of the growth tensor, can be obtained by reformulating a variational method developed by other authors. We discuss the main features of this method in the context of growth mechanics, and we show how our procedure is able to improve them.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.