{"title":"DARTS: Diffusion Approximated Residual Time Sampling for Time-of-flight Rendering in Homogeneous Scattering Media","authors":"Qianyue He, Dongyu Du, Haitian Jiang, Xin Jin","doi":"10.1145/3687930","DOIUrl":null,"url":null,"abstract":"Time-of-flight (ToF) devices have greatly propelled the advancement of various multi-modal perception applications. However, achieving accurate rendering of time-resolved information remains a challenge, particularly in scenes involving complex geometries, diverse materials and participating media. Existing ToF rendering works have demonstrated notable results, yet they struggle with scenes involving scattering media and camera-warped settings. Other steady-state volumetric rendering methods exhibit significant bias or variance when directly applied to ToF rendering tasks. To address these challenges, we integrate transient diffusion theory into path construction and propose novel sampling methods for free-path distance and scattering direction, via resampled importance sampling and offline tabulation. An elliptical sampling method is further adapted to provide controllable vertex connection satisfying any required photon traversal time. In contrast to the existing temporal uniform sampling strategy, our method is the first to consider the contribution of transient radiance to importance-sample the full path, and thus enables improved temporal path construction under multiple scattering settings. The proposed method can be integrated into both path tracing and photon-based frameworks, delivering significant improvements in quality and efficiency with at least a 5x MSE reduction versus SOTA methods in equal rendering time.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"22 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3687930","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Time-of-flight (ToF) devices have greatly propelled the advancement of various multi-modal perception applications. However, achieving accurate rendering of time-resolved information remains a challenge, particularly in scenes involving complex geometries, diverse materials and participating media. Existing ToF rendering works have demonstrated notable results, yet they struggle with scenes involving scattering media and camera-warped settings. Other steady-state volumetric rendering methods exhibit significant bias or variance when directly applied to ToF rendering tasks. To address these challenges, we integrate transient diffusion theory into path construction and propose novel sampling methods for free-path distance and scattering direction, via resampled importance sampling and offline tabulation. An elliptical sampling method is further adapted to provide controllable vertex connection satisfying any required photon traversal time. In contrast to the existing temporal uniform sampling strategy, our method is the first to consider the contribution of transient radiance to importance-sample the full path, and thus enables improved temporal path construction under multiple scattering settings. The proposed method can be integrated into both path tracing and photon-based frameworks, delivering significant improvements in quality and efficiency with at least a 5x MSE reduction versus SOTA methods in equal rendering time.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.