DARTS: Diffusion Approximated Residual Time Sampling for Time-of-flight Rendering in Homogeneous Scattering Media

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Graphics Pub Date : 2024-11-19 DOI:10.1145/3687930
Qianyue He, Dongyu Du, Haitian Jiang, Xin Jin
{"title":"DARTS: Diffusion Approximated Residual Time Sampling for Time-of-flight Rendering in Homogeneous Scattering Media","authors":"Qianyue He, Dongyu Du, Haitian Jiang, Xin Jin","doi":"10.1145/3687930","DOIUrl":null,"url":null,"abstract":"Time-of-flight (ToF) devices have greatly propelled the advancement of various multi-modal perception applications. However, achieving accurate rendering of time-resolved information remains a challenge, particularly in scenes involving complex geometries, diverse materials and participating media. Existing ToF rendering works have demonstrated notable results, yet they struggle with scenes involving scattering media and camera-warped settings. Other steady-state volumetric rendering methods exhibit significant bias or variance when directly applied to ToF rendering tasks. To address these challenges, we integrate transient diffusion theory into path construction and propose novel sampling methods for free-path distance and scattering direction, via resampled importance sampling and offline tabulation. An elliptical sampling method is further adapted to provide controllable vertex connection satisfying any required photon traversal time. In contrast to the existing temporal uniform sampling strategy, our method is the first to consider the contribution of transient radiance to importance-sample the full path, and thus enables improved temporal path construction under multiple scattering settings. The proposed method can be integrated into both path tracing and photon-based frameworks, delivering significant improvements in quality and efficiency with at least a 5x MSE reduction versus SOTA methods in equal rendering time.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"22 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3687930","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Time-of-flight (ToF) devices have greatly propelled the advancement of various multi-modal perception applications. However, achieving accurate rendering of time-resolved information remains a challenge, particularly in scenes involving complex geometries, diverse materials and participating media. Existing ToF rendering works have demonstrated notable results, yet they struggle with scenes involving scattering media and camera-warped settings. Other steady-state volumetric rendering methods exhibit significant bias or variance when directly applied to ToF rendering tasks. To address these challenges, we integrate transient diffusion theory into path construction and propose novel sampling methods for free-path distance and scattering direction, via resampled importance sampling and offline tabulation. An elliptical sampling method is further adapted to provide controllable vertex connection satisfying any required photon traversal time. In contrast to the existing temporal uniform sampling strategy, our method is the first to consider the contribution of transient radiance to importance-sample the full path, and thus enables improved temporal path construction under multiple scattering settings. The proposed method can be integrated into both path tracing and photon-based frameworks, delivering significant improvements in quality and efficiency with at least a 5x MSE reduction versus SOTA methods in equal rendering time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DARTS:用于均质散射介质中飞行时间渲染的扩散近似残差时间采样技术
飞行时间(ToF)设备极大地推动了各种多模态感知应用的发展。然而,实现时间分辨信息的精确渲染仍然是一项挑战,尤其是在涉及复杂几何形状、不同材料和参与介质的场景中。现有的 ToF 渲染工作已经取得了显著的成果,但在涉及散射介质和相机扭曲设置的场景中仍有困难。其他稳态体积渲染方法在直接应用于 ToF 渲染任务时,会表现出明显的偏差或差异。为了应对这些挑战,我们将瞬态扩散理论融入路径构建中,并通过重采样重要度采样和离线制表,为自由路径距离和散射方向提出了新颖的采样方法。我们进一步调整了椭圆采样方法,以提供可控的顶点连接,满足光子穿越时间的任何要求。与现有的时间均匀采样策略相比,我们的方法首次考虑了瞬态辐射对整个路径重要度采样的贡献,从而改进了多种散射设置下的时间路径构建。所提出的方法可以集成到路径追踪和基于光子的框架中,在同等渲染时间内,与 SOTA 方法相比,质量和效率都有显著提高,MSE 降低了至少 5 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
期刊最新文献
Direct Manipulation of Procedural Implicit Surfaces 3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting Quark: Real-time, High-resolution, and General Neural View Synthesis Differentiable Owen Scrambling ELMO: Enhanced Real-time LiDAR Motion Capture through Upsampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1