La0.4Sr0.6CoO3-Catalyzed Selective Oxidation of Ethylbenzene to Acetophenone without Solvent: A New Reactive Oxygen Species Transformation Mechanism Mediated by •O2– Derived from 1O2

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2024-11-20 DOI:10.1021/acssuschemeng.4c06775
Weiwen Mao, Jiaheng Qin, Miao Li, Ming Chen, Wangyu Fu, Zongyan Ma, Jing Chen, Tongtong Fan, Yu Long, Jiantai Ma
{"title":"La0.4Sr0.6CoO3-Catalyzed Selective Oxidation of Ethylbenzene to Acetophenone without Solvent: A New Reactive Oxygen Species Transformation Mechanism Mediated by •O2– Derived from 1O2","authors":"Weiwen Mao, Jiaheng Qin, Miao Li, Ming Chen, Wangyu Fu, Zongyan Ma, Jing Chen, Tongtong Fan, Yu Long, Jiantai Ma","doi":"10.1021/acssuschemeng.4c06775","DOIUrl":null,"url":null,"abstract":"Developing a green, stable, and cost-effective heterogeneous catalyst and clarifying its catalytic mechanism for the selective oxidation of C–H bonds without solvent to carbonyl compounds hold a significant theoretical and practical value. Herein, we synthesize perovskite catalysts using the sol–gel method to catalyze the selective oxidation of ethylbenzene. Notably, La<sub>0.4</sub>Sr<sub>0.6</sub>CoO<sub>3</sub>-800 (800 °C is the calcination temperature of the catalyst) demonstrates remarkable efficacy, converting 73% of ethylbenzene into acetophenone with a selectivity of 93%. Characterization analyses reveal that the incorporation of strontium moderately disrupts the internal balance of the perovskite structure, leading to increased oxygen vacancies and enhanced oxygen adsorption capacity. Moreover, electron paramagnetic resonance and mechanistic studies prove that molecular oxygen on the catalyst surface is converted to singlet oxygen (<sup>1</sup>O<sub>2</sub>) and superoxide radical anions (<sup>•</sup>O<sub>2</sub><sup>–</sup>). The presence of <sup>1</sup>O<sub>2</sub> significantly aids in the production of <sup>•</sup>O<sub>2</sub><sup>–</sup>, thereby effectively promoting the oxidation of ethylbenzene. This research introduces a new reactive oxygen species (ROS) transformation mechanism and provides valuable insights into the selective oxidation of hydrocarbons.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"205 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c06775","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing a green, stable, and cost-effective heterogeneous catalyst and clarifying its catalytic mechanism for the selective oxidation of C–H bonds without solvent to carbonyl compounds hold a significant theoretical and practical value. Herein, we synthesize perovskite catalysts using the sol–gel method to catalyze the selective oxidation of ethylbenzene. Notably, La0.4Sr0.6CoO3-800 (800 °C is the calcination temperature of the catalyst) demonstrates remarkable efficacy, converting 73% of ethylbenzene into acetophenone with a selectivity of 93%. Characterization analyses reveal that the incorporation of strontium moderately disrupts the internal balance of the perovskite structure, leading to increased oxygen vacancies and enhanced oxygen adsorption capacity. Moreover, electron paramagnetic resonance and mechanistic studies prove that molecular oxygen on the catalyst surface is converted to singlet oxygen (1O2) and superoxide radical anions (O2). The presence of 1O2 significantly aids in the production of O2, thereby effectively promoting the oxidation of ethylbenzene. This research introduces a new reactive oxygen species (ROS) transformation mechanism and provides valuable insights into the selective oxidation of hydrocarbons.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
La0.4Sr0.6CoO3 催化乙苯无溶剂选择性氧化为苯乙酮:由 1O2 衍生的 -O2- 介导的一种新的活性氧转化机制
开发一种绿色、稳定、经济的异相催化剂,并阐明其催化机理,用于无溶剂条件下 C-H 键对羰基化合物的选择性氧化,具有重要的理论和实用价值。在此,我们采用溶胶-凝胶法合成了过氧化物催化剂,用于催化乙苯的选择性氧化。值得注意的是,La0.4Sr0.6CoO3-800(催化剂的煅烧温度为 800 °C)表现出了显著的功效,可将 73% 的乙苯转化为苯乙酮,选择性高达 93%。表征分析表明,锶的加入适度地破坏了包晶结构的内部平衡,导致氧空位增加,氧吸附能力增强。此外,电子顺磁共振和机理研究证明,催化剂表面的分子氧被转化为单线态氧(1O2)和超氧自由基阴离子(-O2-)。1O2 的存在极大地促进了 -O2- 的产生,从而有效地促进了乙苯的氧化。这项研究引入了一种新的活性氧(ROS)转化机制,为碳氢化合物的选择性氧化提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Enhanced Glucan–Chitin Complex Extraction from Deoiled Yeast Biomass for Sustainable Biorefinery Applications Integrated Recycling of Red Mud for Iron Ore Sinter Manufacturing: Interfacial Bonding Regulation of the Sintering Process Design Development of Integrated Methane Pyrolysis and Reforming Processes for Low-Carbon Urea Production La0.4Sr0.6CoO3-Catalyzed Selective Oxidation of Ethylbenzene to Acetophenone without Solvent: A New Reactive Oxygen Species Transformation Mechanism Mediated by •O2– Derived from 1O2 Enhancing Photocatalytic Hydrogen Production from Single S. oneidensis MR-1/CdS Biohybrid System via Optimized Electron Transport at the Bioabiotic Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1