EgoHDM: A Real-time Egocentric-Inertial Human Motion Capture, Localization, and Dense Mapping System

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Graphics Pub Date : 2024-11-19 DOI:10.1145/3687907
Handi Yin, Bonan Liu, Manuel Kaufmann, Jinhao He, Sammy Christen, Jie Song, Pan Hui
{"title":"EgoHDM: A Real-time Egocentric-Inertial Human Motion Capture, Localization, and Dense Mapping System","authors":"Handi Yin, Bonan Liu, Manuel Kaufmann, Jinhao He, Sammy Christen, Jie Song, Pan Hui","doi":"10.1145/3687907","DOIUrl":null,"url":null,"abstract":"We present EgoHDM, an online egocentric-inertial human motion capture (mocap), localization, and dense mapping system. Our system uses 6 inertial measurement units (IMUs) and a commodity head-mounted RGB camera. EgoHDM is the first human mocap system that offers <jats:italic>dense</jats:italic> scene mapping in <jats:italic>near real-time.</jats:italic> Further, it is fast and robust to initialize and fully closes the loop between physically plausible map-aware global human motion estimation and mocap-aware 3D scene reconstruction. To achieve this, we design a tightly coupled mocap-aware dense bundle adjustment and physics-based body pose correction module leveraging a local body-centric elevation map. The latter introduces a novel terrain-aware contact PD controller, which enables characters to physically contact the given local elevation map thereby reducing human floating or penetration. We demonstrate the performance of our system on established synthetic and real-world benchmarks. The results show that our method reduces human localization, camera pose, and mapping accuracy error by 41%, 71%, 46%, respectively, compared to the state of the art. Our qualitative evaluations on newly captured data further demonstrate that EgoHDM can cover challenging scenarios in non-flat terrain including stepping over stairs and outdoor scenes in the wild. Our project page: https://handiyin.github.io/EgoHDM/","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"176 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3687907","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We present EgoHDM, an online egocentric-inertial human motion capture (mocap), localization, and dense mapping system. Our system uses 6 inertial measurement units (IMUs) and a commodity head-mounted RGB camera. EgoHDM is the first human mocap system that offers dense scene mapping in near real-time. Further, it is fast and robust to initialize and fully closes the loop between physically plausible map-aware global human motion estimation and mocap-aware 3D scene reconstruction. To achieve this, we design a tightly coupled mocap-aware dense bundle adjustment and physics-based body pose correction module leveraging a local body-centric elevation map. The latter introduces a novel terrain-aware contact PD controller, which enables characters to physically contact the given local elevation map thereby reducing human floating or penetration. We demonstrate the performance of our system on established synthetic and real-world benchmarks. The results show that our method reduces human localization, camera pose, and mapping accuracy error by 41%, 71%, 46%, respectively, compared to the state of the art. Our qualitative evaluations on newly captured data further demonstrate that EgoHDM can cover challenging scenarios in non-flat terrain including stepping over stairs and outdoor scenes in the wild. Our project page: https://handiyin.github.io/EgoHDM/
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EgoHDM:实时脑心惯性人体运动捕捉、定位和密集绘图系统
我们介绍的 EgoHDM 是一种在线自我中心惯性人体动作捕捉(mocap)、定位和密集绘图系统。我们的系统使用 6 个惯性测量单元(IMU)和一个商品头戴式 RGB 摄像机。EgoHDM 是首个可提供近乎实时的密集场景映射的人体动作捕捉系统。此外,它的初始化速度快、鲁棒性强,并能完全闭合物理上可信的地图感知全局人体运动估算和 mocap 感知三维场景重建之间的环路。为此,我们设计了一个紧密耦合的 mocap 感知密集束调整和基于物理的人体姿态校正模块,该模块利用了以人体为中心的局部高程图。后者引入了新颖的地形感知接触 PD 控制器,使角色能够与给定的本地高程图进行物理接触,从而减少人体漂浮或穿透。我们在已建立的合成和真实世界基准上演示了我们系统的性能。结果表明,与现有技术相比,我们的方法将人类定位、摄像机姿势和绘图精度误差分别降低了 41%、71% 和 46%。我们对新捕获的数据进行的定性评估进一步证明,EgoHDM 可以覆盖非平坦地形中的挑战性场景,包括跨过楼梯和野外室外场景。我们的项目页面:https://handiyin.github.io/EgoHDM/
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
期刊最新文献
Direct Manipulation of Procedural Implicit Surfaces 3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting Quark: Real-time, High-resolution, and General Neural View Synthesis Differentiable Owen Scrambling ELMO: Enhanced Real-time LiDAR Motion Capture through Upsampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1