{"title":"EvRepSL: Event-Stream Representation via Self-Supervised Learning for Event-Based Vision","authors":"Qiang Qu;Xiaoming Chen;Yuk Ying Chung;Yiran Shen","doi":"10.1109/TIP.2024.3497795","DOIUrl":null,"url":null,"abstract":"Event-stream representation is the first step for many computer vision tasks using event cameras. It converts the asynchronous event-streams into a formatted structure so that conventional machine learning models can be applied easily. However, most of the state-of-the-art event-stream representations are manually designed and the quality of these representations cannot be guaranteed due to the noisy nature of event-streams. In this paper, we introduce a data-driven approach aiming at enhancing the quality of event-stream representations. Our approach commences with the introduction of a new event-stream representation based on spatial-temporal statistics, denoted as EvRep. Subsequently, we theoretically derive the intrinsic relationship between asynchronous event-streams and synchronous video frames. Building upon this theoretical relationship, we train a representation generator, RepGen, in a self-supervised learning manner accepting EvRep as input. Finally, the event-streams are converted to high-quality representations, termed as EvRepSL, by going through the learned RepGen (without the need of fine-tuning or retraining). Our methodology is rigorously validated through extensive evaluations on a variety of mainstream event-based classification and optical flow datasets (captured with various types of event cameras). The experimental results highlight not only our approach’s superior performance over existing event-stream representations but also its versatility, being agnostic to different event cameras and tasks.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"6579-6591"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10758409/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Event-stream representation is the first step for many computer vision tasks using event cameras. It converts the asynchronous event-streams into a formatted structure so that conventional machine learning models can be applied easily. However, most of the state-of-the-art event-stream representations are manually designed and the quality of these representations cannot be guaranteed due to the noisy nature of event-streams. In this paper, we introduce a data-driven approach aiming at enhancing the quality of event-stream representations. Our approach commences with the introduction of a new event-stream representation based on spatial-temporal statistics, denoted as EvRep. Subsequently, we theoretically derive the intrinsic relationship between asynchronous event-streams and synchronous video frames. Building upon this theoretical relationship, we train a representation generator, RepGen, in a self-supervised learning manner accepting EvRep as input. Finally, the event-streams are converted to high-quality representations, termed as EvRepSL, by going through the learned RepGen (without the need of fine-tuning or retraining). Our methodology is rigorously validated through extensive evaluations on a variety of mainstream event-based classification and optical flow datasets (captured with various types of event cameras). The experimental results highlight not only our approach’s superior performance over existing event-stream representations but also its versatility, being agnostic to different event cameras and tasks.