DeepDuoHDR: A Low Complexity Two Exposure Algorithm for HDR Deghosting on Mobile Devices

Kadir Cenk Alpay;Ahmet Oğuz Akyüz;Nicola Brandonisio;Joseph Meehan;Alan Chalmers
{"title":"DeepDuoHDR: A Low Complexity Two Exposure Algorithm for HDR Deghosting on Mobile Devices","authors":"Kadir Cenk Alpay;Ahmet Oğuz Akyüz;Nicola Brandonisio;Joseph Meehan;Alan Chalmers","doi":"10.1109/TIP.2024.3497838","DOIUrl":null,"url":null,"abstract":"The increased interest in consumer-grade high dynamic range (HDR) images and videos in recent years has caused a proliferation of HDR deghosting algorithms. Despite numerous proposals, a fast, memory-efficient, and robust algorithm has been difficult to achieve. This paper addresses this problem by leveraging the power of attention and U-Net-based neural representations and using a conservative deghosting strategy. Given two bracketed exposures of a scene, we produce an HDR image that maximally resembles the high exposure where it is well-exposed and fuses aligned information from both exposures otherwise. We evaluate the performance of our algorithm under several different challenging scenarios, using both visual and quantitative results, and show that it matches the state-of-the-art algorithms despite using only two exposures and having significantly lower computational complexity. Furthermore, the parameters of our algorithm greatly simplify deploying its different versions for devices with a variety of computational constraints, including mobile devices.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"6592-6606"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10758406/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increased interest in consumer-grade high dynamic range (HDR) images and videos in recent years has caused a proliferation of HDR deghosting algorithms. Despite numerous proposals, a fast, memory-efficient, and robust algorithm has been difficult to achieve. This paper addresses this problem by leveraging the power of attention and U-Net-based neural representations and using a conservative deghosting strategy. Given two bracketed exposures of a scene, we produce an HDR image that maximally resembles the high exposure where it is well-exposed and fuses aligned information from both exposures otherwise. We evaluate the performance of our algorithm under several different challenging scenarios, using both visual and quantitative results, and show that it matches the state-of-the-art algorithms despite using only two exposures and having significantly lower computational complexity. Furthermore, the parameters of our algorithm greatly simplify deploying its different versions for devices with a variety of computational constraints, including mobile devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepDuoHDR:用于移动设备 HDR 去噪的低复杂度双曝光算法
近年来,人们对消费级高动态范围(HDR)图像和视频的兴趣与日俱增,导致 HDR 去宿主化算法层出不穷。尽管提出了许多建议,但一直难以实现快速、内存效率高且稳健的算法。本文利用注意力和基于 U-Net 的神经表征的力量,并采用保守的去宿主化策略来解决这一问题。给定场景的两次括弧式曝光,我们生成的 HDR 图像在曝光良好的情况下最大程度地与高曝光相似,而在其他情况下则融合两次曝光的对齐信息。我们使用视觉和定量结果评估了我们的算法在几种不同挑战场景下的性能,结果表明,尽管只使用了两次曝光,而且计算复杂度大大降低,我们的算法仍能与最先进的算法相媲美。此外,我们算法的参数大大简化了不同版本的部署,适用于各种计算受限的设备,包括移动设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EvRepSL: Event-Stream Representation via Self-Supervised Learning for Event-Based Vision DeepDuoHDR: A Low Complexity Two Exposure Algorithm for HDR Deghosting on Mobile Devices AnySR: Realizing Image Super-Resolution as Any-Scale, Any-Resource Enhanced Multispectral Band-to-Band Registration Using Co-Occurrence Scale Space and Spatial Confined RANSAC Guided Segmented Affine Transformation Pro2Diff: Proposal Propagation for Multi-Object Tracking via the Diffusion Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1