Strain-Control Magnetic Anisotropy of Antiferromagnetism in Two-Dimensional MXene V2C(OH)2

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2024-11-19 DOI:10.1021/acs.jpcc.4c04171
Chengyang Zhao, Shiming Yan, Shiran Gao, Wen Qiao, Ru Bai, Tiejun Zhou
{"title":"Strain-Control Magnetic Anisotropy of Antiferromagnetism in Two-Dimensional MXene V2C(OH)2","authors":"Chengyang Zhao, Shiming Yan, Shiran Gao, Wen Qiao, Ru Bai, Tiejun Zhou","doi":"10.1021/acs.jpcc.4c04171","DOIUrl":null,"url":null,"abstract":"Using antiferromagnetic order states to store information is desirable due to the high rate of data writing, large density of storage, and high anti-interference capability. Tuning magnetic anisotropy is required for data writing with a low energy consumption. In this work, we investigated the control of magnetism of antiferromagnetic two-dimensional MXene V<sub>2</sub>C(OH)<sub>2</sub> based on density functional theory. We find that the magnetic anisotropy in V<sub>2</sub>C(OH)<sub>2</sub> can be regulated by applying both in-plane tensile and vertical compression strain. With applying strain, the energy band gap can also be obviously varied. By the density of states and orbital-resolved magnetic anisotropy, we confirm that the strain-inducing changes of the distribution of the d<sub><i>z</i><sup>2</sup></sub> orbital states near the Fermi level, which form magnetic anisotropy with the d<sub><i>xz</i></sub> orbital by the spin–orbital coupling, have significant effects on the control of magnetic anisotropy. The results of this study show that the two-dimensional MXene material V<sub>2</sub>C(OH)<sub>2</sub> with strain-tunable antiferromagnetism will have potential application in spintronics devices.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"15 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c04171","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Using antiferromagnetic order states to store information is desirable due to the high rate of data writing, large density of storage, and high anti-interference capability. Tuning magnetic anisotropy is required for data writing with a low energy consumption. In this work, we investigated the control of magnetism of antiferromagnetic two-dimensional MXene V2C(OH)2 based on density functional theory. We find that the magnetic anisotropy in V2C(OH)2 can be regulated by applying both in-plane tensile and vertical compression strain. With applying strain, the energy band gap can also be obviously varied. By the density of states and orbital-resolved magnetic anisotropy, we confirm that the strain-inducing changes of the distribution of the dz2 orbital states near the Fermi level, which form magnetic anisotropy with the dxz orbital by the spin–orbital coupling, have significant effects on the control of magnetic anisotropy. The results of this study show that the two-dimensional MXene material V2C(OH)2 with strain-tunable antiferromagnetism will have potential application in spintronics devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维 MXene V2C(OH)2 中反铁磁性的应变控制磁各向异性
由于数据写入速度快、存储密度大、抗干扰能力强,使用反铁磁阶态来存储信息是非常理想的。要实现低能耗的数据写入,就需要调节磁各向异性。在这项工作中,我们基于密度泛函理论研究了反铁磁性二维 MXene V2C(OH)2 的磁性控制。我们发现,V2C(OH)2 中的磁各向异性可通过施加面内拉伸和垂直压缩应变来调节。随着应变的施加,能带间隙也会发生明显的变化。通过态密度和轨道分辨磁各向异性,我们证实了应变引起的费米级附近 dz2 轨道态分布的变化对磁各向异性的控制有显著的影响,这些态通过自旋轨道耦合与 dxz 轨道形成磁各向异性。研究结果表明,具有应变可调反铁磁性的二维 MXene 材料 V2C(OH)2 将有可能应用于自旋电子器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Dynamic Polar Hydrogen Bonds and Photoconductivity of an Alkylamide-Substituted Carbazole Derivative Data-Driven Transition Temperature Enhancement of NbN Layered Structures: A Framework for Quantum Materials Design Modulation of Proton Permeation through Defect Engineering in Hexagonal Boron Nitride Photoluminescence Switching in Quantum Dots Connected with Carboxylic Acid and Thiocarboxylic Acid End-Group Diarylethene Molecules Pseudohalide Anion Surface Engineering for Mixed Cation Perovskite Nanocrystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1