Tailoring electronic structure to enhance ammonium-ion storage properties of VO2 by molybdenum doping toward highly-efficient aqueous ammonium-ion battery

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2024-11-19 DOI:10.1039/d4qi01910e
Yifu Zhang, Zhenhua Zhou, Xianfang Tan, Yanyan Liu, Fangfang Zhang, Changgong Meng, Xiaoming Zhu
{"title":"Tailoring electronic structure to enhance ammonium-ion storage properties of VO2 by molybdenum doping toward highly-efficient aqueous ammonium-ion battery","authors":"Yifu Zhang, Zhenhua Zhou, Xianfang Tan, Yanyan Liu, Fangfang Zhang, Changgong Meng, Xiaoming Zhu","doi":"10.1039/d4qi01910e","DOIUrl":null,"url":null,"abstract":"Recently, the researches on ammonium-ion storage have gained widespread interest, and it is still a major problem and a popular research area to produce high-performance electrode materials for aqueous ammonium ion batteries (AAIBs). Herein, the electronic structure of tunnel-like vanadium dioxide (VO2) is tailored by molybdenum doping (denoted as VO2-Mo) to enhance ammonium-ion storage properties toward highly-efficient AAIBs. VO2-Mo with unique nanobelt structure is designed and synthesized by adjusting the content of Mo via a facile hydrothermal method. Density functional theory (DFT) simulations and experimental data both demonstrate that molybdenum atom in VO2 structure can improve mass transfer, speed up ion transport, and accelerate kinetic, showing boosted NH4+-storage properties. With 2 % Mo doping, at 0.1 A g−1, VO2-Mo exhibits a specific discharge capacity of around 370 mAh g−1, surpassing VO2 (232 mAh g−1) and the vanadium oxides-based materials that have been reported for NH4+-storage. Approximately 6000 successive charging and discharging cycles at 2 A g−1, it essentially maintains the specific capacity of 140 mAh g−1. Using VO2-Mo, polyaniline (PANI) and 1 M (NH4)2SO4 as the anode, cathode, and electrolyte, respectively, VO2-Mo//PANI full battery is further built, and at 0.2 A g−1, it reaches a specific discharge capacity of up to 232 mAh g−1, surpassing the performances of the most state-of-the-art AAIBs. At 89 W·kg−1, the VO2-Mo//PANI battery can achieve an energy density (E) up to 133 Wh·kg−1. This study provides new ideas for tailoring electrode materials with enhanced NH4+-storage for AAIBs.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"69 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi01910e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the researches on ammonium-ion storage have gained widespread interest, and it is still a major problem and a popular research area to produce high-performance electrode materials for aqueous ammonium ion batteries (AAIBs). Herein, the electronic structure of tunnel-like vanadium dioxide (VO2) is tailored by molybdenum doping (denoted as VO2-Mo) to enhance ammonium-ion storage properties toward highly-efficient AAIBs. VO2-Mo with unique nanobelt structure is designed and synthesized by adjusting the content of Mo via a facile hydrothermal method. Density functional theory (DFT) simulations and experimental data both demonstrate that molybdenum atom in VO2 structure can improve mass transfer, speed up ion transport, and accelerate kinetic, showing boosted NH4+-storage properties. With 2 % Mo doping, at 0.1 A g−1, VO2-Mo exhibits a specific discharge capacity of around 370 mAh g−1, surpassing VO2 (232 mAh g−1) and the vanadium oxides-based materials that have been reported for NH4+-storage. Approximately 6000 successive charging and discharging cycles at 2 A g−1, it essentially maintains the specific capacity of 140 mAh g−1. Using VO2-Mo, polyaniline (PANI) and 1 M (NH4)2SO4 as the anode, cathode, and electrolyte, respectively, VO2-Mo//PANI full battery is further built, and at 0.2 A g−1, it reaches a specific discharge capacity of up to 232 mAh g−1, surpassing the performances of the most state-of-the-art AAIBs. At 89 W·kg−1, the VO2-Mo//PANI battery can achieve an energy density (E) up to 133 Wh·kg−1. This study provides new ideas for tailoring electrode materials with enhanced NH4+-storage for AAIBs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过掺杂钼来调整电子结构以增强 VO2 的铵离子存储特性,从而实现高效的水性铵离子电池
近年来,铵离子存储的研究受到了广泛关注,而如何制备高性能的水性铵离子电池(AAIBs)电极材料仍是一大难题和热门研究领域。本文通过掺杂钼(表示为 VO2-Mo)来定制隧道状二氧化钒(VO2)的电子结构,以增强铵离子存储性能,从而实现高效 AAIBs。通过简单的水热法调整钼的含量,设计并合成了具有独特纳米带状结构的 VO2-Mo。密度泛函理论(DFT)模拟和实验数据都表明,VO2 结构中的钼原子可以改善传质、加快离子传输和加速动力学,从而显示出更强的 NH4+ 储存性能。钼掺杂量为 2 % 时,在 0.1 A g-1 的条件下,VO2-Mo 的比放电容量约为 370 mAh g-1,超过了 VO2(232 mAh g-1)和已报道过的基于钒氧化物的 NH4+ 存储材料。在 2 A g-1 的条件下连续充放电约 6000 次后,它的比容量基本保持在 140 mAh g-1 左右。使用 VO2-Mo、聚苯胺 (PANI) 和 1 M (NH4)2SO4 分别作为阳极、阴极和电解质,进一步构建了 VO2-Mo//PANI 全电池,在 0.2 A g-1 的条件下,比放电容量高达 232 mAh g-1,超过了最先进的 AAIB 性能。在 89 W-kg-1 的条件下,VO2-Mo//PANI 电池的能量密度 (E) 可达到 133 Wh-kg-1。这项研究为为 AAIBs 定制具有更强 NH4+ 储存能力的电极材料提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
Integrating Multiple Emission Centers for Photoluminescence Regulation in Copper-Antimony/Bismuth Halides Enhancing White Light-Emitting Diode Performance with Ultra-Wide Spectrum ZnS:Mn-CDs@SiO2 Dual Core@Shell Composite Correction: Coordination tuning of Ni/Fe complex-based electrocatalysts for enhanced oxygen evolution Rapid room-temperature H2S detection based on Bi2S3/CuO heterostructures: the synergy of increased surface-adsorbed oxygen and heterojunction effect Critical assessment of exsolution process in Cu-doped SrTiO3 by a combined spectroscopic approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1