Pallavi Singh, Davide Raffaele Ceratti, Yahel Soffer, Sudipta Bera, Yishay Feldman, Michael Elbaum, Dan Oron, David Cahen, Gary Hodes
{"title":"Guanidinium Substitution Improves Self-Healing and Photodamage Resilience of MAPbI3","authors":"Pallavi Singh, Davide Raffaele Ceratti, Yahel Soffer, Sudipta Bera, Yishay Feldman, Michael Elbaum, Dan Oron, David Cahen, Gary Hodes","doi":"10.1021/acs.jpcc.4c06090","DOIUrl":null,"url":null,"abstract":"Self-healing materials can become game changers for developing sustainable (opto)electronics. APbX<sub>3</sub> halide (=X<sup>–</sup>) perovskites, HaPs, have shown a remarkable ability to self-heal damage. While we demonstrated self-healing in pure HaP compounds, in single crystals, and in polycrystalline thin films (as used in most devices), HaP compositions with multiple A<sup>+</sup> (and X<sup>–</sup>) constituents are preferred for solar cells. We now show self-healing in mixed A<sup>+</sup> HaPs. Specifically, if at least 15 atom % of the methylammonium (MA<sup>+</sup>) A cation is substituted for by guanidinium (Gua<sup>+</sup>) or acetamidinium (AA<sup>+</sup>), then the self-healing rate after damage is enhanced. In contrast, replacing MA<sup>+</sup> with dimethylammonium (DMA<sup>+</sup>), comparable in size to Gua<sup>+</sup> or AA<sup>+</sup>, does not alter this rate. Based on the times for self-healing, we infer that the rate-determining step involves short-range diffusion of A<sup>+</sup> and/or Pb<sup>2+</sup> cations and that the self-healing rate correlates with the strain in the material, the A<sup>+</sup> cation dipole moment, and H-bonding between A<sup>+</sup> and I<sup>–</sup>. These insights may offer clues for developing a detailed self-healing mechanism and understanding the kinetics to guide the design of self-healing materials. Fast recovery kinetics are important from the device perspective, as they allow complete recovery in devices during operation or when switched off (LEDs)/in the dark (photovoltaics).","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"251 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c06090","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Self-healing materials can become game changers for developing sustainable (opto)electronics. APbX3 halide (=X–) perovskites, HaPs, have shown a remarkable ability to self-heal damage. While we demonstrated self-healing in pure HaP compounds, in single crystals, and in polycrystalline thin films (as used in most devices), HaP compositions with multiple A+ (and X–) constituents are preferred for solar cells. We now show self-healing in mixed A+ HaPs. Specifically, if at least 15 atom % of the methylammonium (MA+) A cation is substituted for by guanidinium (Gua+) or acetamidinium (AA+), then the self-healing rate after damage is enhanced. In contrast, replacing MA+ with dimethylammonium (DMA+), comparable in size to Gua+ or AA+, does not alter this rate. Based on the times for self-healing, we infer that the rate-determining step involves short-range diffusion of A+ and/or Pb2+ cations and that the self-healing rate correlates with the strain in the material, the A+ cation dipole moment, and H-bonding between A+ and I–. These insights may offer clues for developing a detailed self-healing mechanism and understanding the kinetics to guide the design of self-healing materials. Fast recovery kinetics are important from the device perspective, as they allow complete recovery in devices during operation or when switched off (LEDs)/in the dark (photovoltaics).
期刊介绍:
The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.