Composition engineering of Cu2ZnGexSn1-xS4 nanoparticles hole transport layer for carbon electrode-based perovskite solar cells

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-11-20 DOI:10.1039/d4ta07106a
Nian Cheng, Weiwei Li, Zhen-Yu Xiao, Han Pan, Dingshan Zheng, Wenxing Yang
{"title":"Composition engineering of Cu2ZnGexSn1-xS4 nanoparticles hole transport layer for carbon electrode-based perovskite solar cells","authors":"Nian Cheng, Weiwei Li, Zhen-Yu Xiao, Han Pan, Dingshan Zheng, Wenxing Yang","doi":"10.1039/d4ta07106a","DOIUrl":null,"url":null,"abstract":"Cu2ZnSnS4 (CZTS) and Cu2ZnGeS4 (CZGS) nanoparticles are important inorganic hole transport layers (HTLs) for carbon electrode-based perovskite solar cells (C-PSCs), however the performances of the corresponding C-PSCs are still not satisfactory, which mainly originates from the un-optimized photo-electronic properties of the pristine CZTS and CZGS nanoparticles. Herein, composition engineering via alloying CZTS and CZGS is used to optimize the photo-electronic properties of the resulting CZGxT1-xS HTLs (x = 0, 0.25, 0.50, 0.75, and 1.0), which plays a pivotal role on the performances of the C-PSCs. On one hand, the optimum CZG0.5T0.5S HTL exhibits suitable conduction band energy barrier at the perovskite/CZG0.5T0.5S interface, thus, charge carrier recombination at the perovskite/CZG0.5T0.5S interface could be effectively suppressed. On the other hand, CZG0.5T0.5S HTL exhibit much larger conductivity, which could efficiently transport the holes from perovskite to carbon electrode. Therefore, C-PSCs with the CZG0.5T0.5S HTL could demonstrate a champion power conversion efficiency of 19.76%.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"42 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta07106a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cu2ZnSnS4 (CZTS) and Cu2ZnGeS4 (CZGS) nanoparticles are important inorganic hole transport layers (HTLs) for carbon electrode-based perovskite solar cells (C-PSCs), however the performances of the corresponding C-PSCs are still not satisfactory, which mainly originates from the un-optimized photo-electronic properties of the pristine CZTS and CZGS nanoparticles. Herein, composition engineering via alloying CZTS and CZGS is used to optimize the photo-electronic properties of the resulting CZGxT1-xS HTLs (x = 0, 0.25, 0.50, 0.75, and 1.0), which plays a pivotal role on the performances of the C-PSCs. On one hand, the optimum CZG0.5T0.5S HTL exhibits suitable conduction band energy barrier at the perovskite/CZG0.5T0.5S interface, thus, charge carrier recombination at the perovskite/CZG0.5T0.5S interface could be effectively suppressed. On the other hand, CZG0.5T0.5S HTL exhibit much larger conductivity, which could efficiently transport the holes from perovskite to carbon electrode. Therefore, C-PSCs with the CZG0.5T0.5S HTL could demonstrate a champion power conversion efficiency of 19.76%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于碳电极型过氧化物太阳能电池的 Cu2ZnGexSn1-xS4 纳米粒子空穴传输层的成分工程设计
Cu2ZnSnS4(CZTS)和Cu2ZnGeS4(CZGS)纳米粒子是碳电极型过氧化物太阳能电池(C-PSCs)的重要无机空穴传输层(HTLs),但相应的C-PSCs性能仍不尽如人意,这主要源于原始CZTS和CZGS纳米粒子的光电特性未优化。在这里,通过对 CZTS 和 CZGS 进行合金化,对所得到的 CZGxT1-xS HTLs(x = 0、0.25、0.50、0.75 和 1.0)的光电性能进行了优化,这对 C-PSC 的性能起着举足轻重的作用。一方面,最佳的 CZG0.5T0.5S HTL 在包晶/CZG0.5T0.5S 界面表现出合适的导带能垒,因此可以有效抑制电荷载流子在包晶/CZG0.5T0.5S 界面的重组。另一方面,CZG0.5T0.5S HTL 表现出更大的电导率,可以有效地将空穴从包晶石传输到碳电极。因此,采用 CZG0.5T0.5S HTL 的 C-PSC 电源转换效率高达 19.76%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Light-induced degradation of methylammonium tin iodide absorber layers High-voltage Symmetric Supercapacitors Developed by Engineering DyFeO3 Electrodes and Aqueous Electrolytes Advancing High Capacity 3D VO2(B) Cathodes for Improved Zinc-ion Battery Performance High-temperature oxidation behavior of transition metal complex concentrated alloys (TM-CCAs): a comprehensive review Self-assembled molecules for hole extraction in efficient inverted PbS quantum dot solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1