Dong Han Ha, Gichang Noh, Hakseong Kim, Dong Hwan Kim, Jeongho Kim, Suyong Jung, Chanyong Hwang, Ha Young Lee, Yong Ju Yun, Joon Young Kwak, Kibum Kang, Sam Nyung Yi
{"title":"Raman spectroscopy study of K-birnessite single crystals","authors":"Dong Han Ha, Gichang Noh, Hakseong Kim, Dong Hwan Kim, Jeongho Kim, Suyong Jung, Chanyong Hwang, Ha Young Lee, Yong Ju Yun, Joon Young Kwak, Kibum Kang, Sam Nyung Yi","doi":"10.1039/d4ta06118g","DOIUrl":null,"url":null,"abstract":"Raman studies of manganese dioxide (MnO<small><sub>2</sub></small>), a crucial material for sustainable and innovative solutions in energy storage and environmental remediation, have predominantly been conducted on fine-grained aggregates, leaving the identification of Raman peaks open to debate. To address this, in this study the Raman spectra of potassium (K)-birnessite single crystals with varying crystal thickness, temperature, and polarization configuration are measured. An acoustic phonon mode of birnessite is identified, which is found to be sensitive to both crystal thickness and interlayer spacing, with its frequency increasing by approximately 35% when the c-axis lattice parameter is reduced from 0.70 to 0.65 nm by the removal of interlayer water. In contrast, the dependence of the optical phonon modes on crystal thickness and interlayer spacing is not particularly noticeable. It is demonstrated that the characteristic Raman peak of K-birnessite, observed at approximately 559 cm<small><sup>–1</sup></small>, originates from a two-dimensional hexagonal configuration of cations and water molecules within the interlayer space, rather than from the MnO<small><sub>6</sub></small> octahedra. Additionally, the doubly degenerate vibrational mode of MnO<small><sub>6</sub></small> octahedra, corresponding to the motion of oxygen atoms in the basal plane, splits into two, confirming that the MnO6 octahedra are distorted by the Jahn–Teller effect.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"57 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06118g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Raman studies of manganese dioxide (MnO2), a crucial material for sustainable and innovative solutions in energy storage and environmental remediation, have predominantly been conducted on fine-grained aggregates, leaving the identification of Raman peaks open to debate. To address this, in this study the Raman spectra of potassium (K)-birnessite single crystals with varying crystal thickness, temperature, and polarization configuration are measured. An acoustic phonon mode of birnessite is identified, which is found to be sensitive to both crystal thickness and interlayer spacing, with its frequency increasing by approximately 35% when the c-axis lattice parameter is reduced from 0.70 to 0.65 nm by the removal of interlayer water. In contrast, the dependence of the optical phonon modes on crystal thickness and interlayer spacing is not particularly noticeable. It is demonstrated that the characteristic Raman peak of K-birnessite, observed at approximately 559 cm–1, originates from a two-dimensional hexagonal configuration of cations and water molecules within the interlayer space, rather than from the MnO6 octahedra. Additionally, the doubly degenerate vibrational mode of MnO6 octahedra, corresponding to the motion of oxygen atoms in the basal plane, splits into two, confirming that the MnO6 octahedra are distorted by the Jahn–Teller effect.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.