Molecular origins of exciton condensation in van der Waals heterostructure bilayers

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Science Pub Date : 2024-11-20 DOI:10.1039/d4sc04149f
Lillian I. Payne Torres, Anna O. Schouten, David A. Mazziotti
{"title":"Molecular origins of exciton condensation in van der Waals heterostructure bilayers","authors":"Lillian I. Payne Torres, Anna O. Schouten, David A. Mazziotti","doi":"10.1039/d4sc04149f","DOIUrl":null,"url":null,"abstract":"Recent experiments have realized exciton condensation in bilayer materials such as graphene double layers and the van der Waals heterostructure MoSe<small><sub>2</sub></small>–WSe<small><sub>2</sub></small> with the potential for nearly frictionless energy transport. Here we computationally observe the microscopic beginnings of exciton condensation in a molecular-scale fragment of MoSe<small><sub>2</sub></small>–WSe<small><sub>2</sub></small>, using advanced electronic structure methods based on reduced density matrices. We establish a connection between the signature of exciton condensation—the presence of a large eigenvalue in the particle-hole reduced density matrix—and experimental evidence of exciton condensation in the material. The presence of a “critical seed” of exciton condensation in a molecular-scale fragment of a heterostructure bilayer provides insight into how local short-range strongly correlated effects may give rise to macroscopic exciton condensation. We find that molecular-scale properties such as layer alignment and interlayer distance can impact the formation of nonclassical long-range order in heterostructure bilayers, demonstrating the importance of geometric considerations for the rational design of exciton condensate materials. Mechanistic insights into the microscopic origins of exciton condensation have potential implications for the design and development of new materials with enhanced energy transport properties.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"36 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc04149f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent experiments have realized exciton condensation in bilayer materials such as graphene double layers and the van der Waals heterostructure MoSe2–WSe2 with the potential for nearly frictionless energy transport. Here we computationally observe the microscopic beginnings of exciton condensation in a molecular-scale fragment of MoSe2–WSe2, using advanced electronic structure methods based on reduced density matrices. We establish a connection between the signature of exciton condensation—the presence of a large eigenvalue in the particle-hole reduced density matrix—and experimental evidence of exciton condensation in the material. The presence of a “critical seed” of exciton condensation in a molecular-scale fragment of a heterostructure bilayer provides insight into how local short-range strongly correlated effects may give rise to macroscopic exciton condensation. We find that molecular-scale properties such as layer alignment and interlayer distance can impact the formation of nonclassical long-range order in heterostructure bilayers, demonstrating the importance of geometric considerations for the rational design of exciton condensate materials. Mechanistic insights into the microscopic origins of exciton condensation have potential implications for the design and development of new materials with enhanced energy transport properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
范德华异质结构双层膜中激子凝聚的分子起源
最近的实验已经实现了激子在双层材料(如石墨烯双层和范德华异质结构 MoSe2-WSe2)中的凝聚,并有可能实现几乎无摩擦的能量传输。在这里,我们利用基于还原密度矩阵的先进电子结构方法,通过计算观察了激子在 MoSe2-WSe2 分子尺度片段中凝聚的微观开端。我们在激子凝聚的特征--粒子-空穴还原密度矩阵中大特征值的存在--与材料中激子凝聚的实验证据之间建立了联系。在异质结构双分子层的分子尺度片段中存在激子凝聚的 "临界种子",这让我们深入了解了局部短程强相关效应是如何引起宏观激子凝聚的。我们发现,分子尺度特性(如层对齐和层间距离)会影响异质结构双分子层中非典型长程秩序的形成,这证明了几何因素对于合理设计激子凝聚材料的重要性。从机理上深入了解激子凝聚的微观起源,对设计和开发具有更强能量传输特性的新材料具有潜在的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
期刊最新文献
Photodynamic therapy photosensitizers and photoactivated chemotherapeutics exhibit distinct bioenergetic profiles to impact ATP metabolism Bimodal accurate H2O2 regulation to equalize tumor-associated macrophage repolarization and immunogenic tumor cell death elicitation BINAP-CuH-catalysed enantioselective allylation using alkoxyallenes to access 1,2-syn-tert,sec-diols Highly selective custom reduction products for hydrogenation of CO2-derived urea derivatives or carbamates Rational Design of Organic Diradicals with Robust High-Spin Ground State Based on Antiaromatic Linkers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1