A Microporous Hydrogen-Bonded Organic Framework with Open Pyrene Sites Isolated by Hydrogen-Bonded Helical Chains for Efficient Separation of Xenon and Krypton
{"title":"A Microporous Hydrogen-Bonded Organic Framework with Open Pyrene Sites Isolated by Hydrogen-Bonded Helical Chains for Efficient Separation of Xenon and Krypton","authors":"Lei He, Yunbin Li, Lu Li, Zhitao Wang, Yanting Chen, Furong Yuan, Gaoyan Lan, Chenxin Chen, Shengchang Xiang, Banglin Chen, Zhangjing Zhang","doi":"10.1002/anie.202418917","DOIUrl":null,"url":null,"abstract":"Achieving efficient xenon/krypton (Xe/Kr) separation in emerging hydrogen-bonded organic frameworks (HOFs) is highly challenging because of the lack of gas-binding sites on their pore surfaces. Herein, we report the first microporous HOF (HOF-FJU-168) based on hydrogen-bonded helical chains, which prevent self-aggregation of the pyrene core, thereby preserving open pyrene sites on the pore surfaces. Its activated form, HOF-FJU-168a is capable of separating Xe/Kr under ambient conditions while achieving an excellent balance between adsorption capacity and selectivity. At 296 K and 1 bar, the Xe adsorption capacity of HOF-FJU-168a reached 78.31 cm³/g, with an Xe/Kr IAST selectivity of 22.0; both values surpass those of currently known top-performing HOFs. Breakthrough experiments confirmed its superior separation performance with a separation factor of 8.6 and a yield of high-purity Kr (> 99.5%) of 184 mL/g. Furthermore HOF-FJU-168 exhibits excellent thermal and chemical stability, as well as renewability. Single-crystal X-ray diffraction and molecular modeling revealed that the unique electrostatic surface potential around the open pyrene sites creates a micro-electric field, exerting a stronger polarizing effect on Xe than on Kr, thereby enhancing host-Xe interactions.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"57 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202418917","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving efficient xenon/krypton (Xe/Kr) separation in emerging hydrogen-bonded organic frameworks (HOFs) is highly challenging because of the lack of gas-binding sites on their pore surfaces. Herein, we report the first microporous HOF (HOF-FJU-168) based on hydrogen-bonded helical chains, which prevent self-aggregation of the pyrene core, thereby preserving open pyrene sites on the pore surfaces. Its activated form, HOF-FJU-168a is capable of separating Xe/Kr under ambient conditions while achieving an excellent balance between adsorption capacity and selectivity. At 296 K and 1 bar, the Xe adsorption capacity of HOF-FJU-168a reached 78.31 cm³/g, with an Xe/Kr IAST selectivity of 22.0; both values surpass those of currently known top-performing HOFs. Breakthrough experiments confirmed its superior separation performance with a separation factor of 8.6 and a yield of high-purity Kr (> 99.5%) of 184 mL/g. Furthermore HOF-FJU-168 exhibits excellent thermal and chemical stability, as well as renewability. Single-crystal X-ray diffraction and molecular modeling revealed that the unique electrostatic surface potential around the open pyrene sites creates a micro-electric field, exerting a stronger polarizing effect on Xe than on Kr, thereby enhancing host-Xe interactions.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.