Hui Dai, Yaohui Liang, Xiang Long, Tianyi Tang, Haozhi Xie, Zhiwei Ma, Gaoyu Li, Zhiyong Yang, Juan Zhao, Zhenguo Chi
{"title":"Effective Design Strategy for Thermally Activated Delayed Fluorescence Emitters with Aggregation-Induced emission to Enable Sky-blue OLEDs Achieving EQE Nearly 30%","authors":"Hui Dai, Yaohui Liang, Xiang Long, Tianyi Tang, Haozhi Xie, Zhiwei Ma, Gaoyu Li, Zhiyong Yang, Juan Zhao, Zhenguo Chi","doi":"10.1039/d4sc06613h","DOIUrl":null,"url":null,"abstract":"Pure organic thermally activated delayed fluorescence (TADF) materials hold great promise for efficient organic light-emitting diodes (OLEDs), yet developing high-performing blue TADF materials that integrate short delayed lifetime with aggregation induced emission (AIE) property remains a significant challenge. In this study, we developed three highly-efficient blue TADF emitters (32clCBP, 32clCXT and 32PclCXT) featuring AIE characteristics by integrating rigid π-extended donors with different acceptors. Notably, in the doped 32PclCXT film achieved an exceptionally high photoluminescence quantum efficiency of up to 99% and a short delayed lifetime of 1.4 µs. Furthermore, the fabricated OLEDs based on 32PclCXT exhibited an impressive external quantum efficiency of 29.9% in the sky-blue region, along with low roll-off at high luminance. Therefore, this work establishes a new strategy for developing high-efficiency blue TADF materials and devices.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"14 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc06613h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pure organic thermally activated delayed fluorescence (TADF) materials hold great promise for efficient organic light-emitting diodes (OLEDs), yet developing high-performing blue TADF materials that integrate short delayed lifetime with aggregation induced emission (AIE) property remains a significant challenge. In this study, we developed three highly-efficient blue TADF emitters (32clCBP, 32clCXT and 32PclCXT) featuring AIE characteristics by integrating rigid π-extended donors with different acceptors. Notably, in the doped 32PclCXT film achieved an exceptionally high photoluminescence quantum efficiency of up to 99% and a short delayed lifetime of 1.4 µs. Furthermore, the fabricated OLEDs based on 32PclCXT exhibited an impressive external quantum efficiency of 29.9% in the sky-blue region, along with low roll-off at high luminance. Therefore, this work establishes a new strategy for developing high-efficiency blue TADF materials and devices.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.