METTL3 and IGF2BP2 coordinately regulate FOSL1 mRNA via m6A modification, suppressing trophoblast invasion and contributing to fetal growth restriction
Ruixin Chen, Tingting Wang, Hai Tong, Xue Zhang, Jie Ruan, Hongbo Qi, Xinghui Liu, Guolin He
{"title":"METTL3 and IGF2BP2 coordinately regulate FOSL1 mRNA via m6A modification, suppressing trophoblast invasion and contributing to fetal growth restriction","authors":"Ruixin Chen, Tingting Wang, Hai Tong, Xue Zhang, Jie Ruan, Hongbo Qi, Xinghui Liu, Guolin He","doi":"10.1096/fj.202401665R","DOIUrl":null,"url":null,"abstract":"<p>Fetal growth restriction (FGR) increases the risk of short-term and long-term complications. Widespread N6-methyladenosine (m6A) modifications on mRNAs have been found to be involved in various biological processes. However, the role of m6A modification in the pathogenesis of FGR remains elusive. Here, we report that elevated levels of METTL3 and m6A modification were detected in FGR placentae. Functionally, cell migration, invasion, and proliferation abilities were suppressed after METTL3 overexpression in HTR8/SVneo cells. Subsequently, methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) of METTL3-knockdown HTR8/SVneo cells were utilized together to identify FOSL1 as the downstream target genes of METTL3. Furthermore, we illustrated that METTL3-mediated m6A modification enhanced the expression of FOSL1 in a IGF2BP2 dependent manner. FOSL1 inhibited trophoblast invasion and migration. Importantly, STM2457, a novel METTL3 catalytic inhibitor, was intravenously administered to FGR mice models, which restore fetal and placental weights in vivo. In vitro STM2457 regulated trophoblast proliferation, invasion, and migration in a dose-dependent manner. In summary, this study reveals that METTL3 and IGF2BP2 increase FOSL1 expression in an m6A-dependent manner. The increase of FOSL1disrupts normal trophoblast invasion, which results in the progression of FGR. METTL3 can serve as a potential target for FGR therapy.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"38 22","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202401665R","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202401665R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fetal growth restriction (FGR) increases the risk of short-term and long-term complications. Widespread N6-methyladenosine (m6A) modifications on mRNAs have been found to be involved in various biological processes. However, the role of m6A modification in the pathogenesis of FGR remains elusive. Here, we report that elevated levels of METTL3 and m6A modification were detected in FGR placentae. Functionally, cell migration, invasion, and proliferation abilities were suppressed after METTL3 overexpression in HTR8/SVneo cells. Subsequently, methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) of METTL3-knockdown HTR8/SVneo cells were utilized together to identify FOSL1 as the downstream target genes of METTL3. Furthermore, we illustrated that METTL3-mediated m6A modification enhanced the expression of FOSL1 in a IGF2BP2 dependent manner. FOSL1 inhibited trophoblast invasion and migration. Importantly, STM2457, a novel METTL3 catalytic inhibitor, was intravenously administered to FGR mice models, which restore fetal and placental weights in vivo. In vitro STM2457 regulated trophoblast proliferation, invasion, and migration in a dose-dependent manner. In summary, this study reveals that METTL3 and IGF2BP2 increase FOSL1 expression in an m6A-dependent manner. The increase of FOSL1disrupts normal trophoblast invasion, which results in the progression of FGR. METTL3 can serve as a potential target for FGR therapy.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.