Tracking the North American Asian Longhorned Beetle Invasion With Genomics

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY Evolutionary Applications Pub Date : 2024-11-19 DOI:10.1111/eva.70036
Mingming Cui, Amanda D. Roe, Brian Boyle, Melody Keena, Yunke Wu, W. Evan Braswell, Michael T. Smith, Ben Gasman, Juan Shi, Marion Javal, Geraldine Roux, Jean J. Turgeon, Richard Hamelin, Ilga Porth
{"title":"Tracking the North American Asian Longhorned Beetle Invasion With Genomics","authors":"Mingming Cui,&nbsp;Amanda D. Roe,&nbsp;Brian Boyle,&nbsp;Melody Keena,&nbsp;Yunke Wu,&nbsp;W. Evan Braswell,&nbsp;Michael T. Smith,&nbsp;Ben Gasman,&nbsp;Juan Shi,&nbsp;Marion Javal,&nbsp;Geraldine Roux,&nbsp;Jean J. Turgeon,&nbsp;Richard Hamelin,&nbsp;Ilga Porth","doi":"10.1111/eva.70036","DOIUrl":null,"url":null,"abstract":"<p>Biological invasions pose significant threats to ecological and economic stability, with invasive pests like the Asian longhorned beetle (<i>Anoplophora glabripennis</i> Motschulsky, ALB) causing substantial damage to forest ecosystems. Effective pest management relies on comprehensive knowledge of the insect's biology and invasion history. This study uses genomics to address these knowledge gaps and inform existing biosurveillance frameworks. We used 2768 genome-wide single nucleotide polymorphisms to compare invasive <i>A. glabripennis</i> populations in North America, using genomic variation to trace their sources of invasion and spread patterns, thereby refining our understanding of this species' invasion history. We found that most North American <i>A. glabripennis</i> infestations were distinct, resulting from multiple independent introductions from the native range. Following their introduction, all invasive populations experienced a genetic bottleneck which was followed by a population expansion, with a few also showing secondary spread to satellite infestations. Our study provides a foundation for a genome-based biosurveillance tool that can be used to clarify the origin of intercepted individuals, allowing regulatory agencies to strengthen biosecurity measures against this invasive beetle.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 11","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70036","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70036","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biological invasions pose significant threats to ecological and economic stability, with invasive pests like the Asian longhorned beetle (Anoplophora glabripennis Motschulsky, ALB) causing substantial damage to forest ecosystems. Effective pest management relies on comprehensive knowledge of the insect's biology and invasion history. This study uses genomics to address these knowledge gaps and inform existing biosurveillance frameworks. We used 2768 genome-wide single nucleotide polymorphisms to compare invasive A. glabripennis populations in North America, using genomic variation to trace their sources of invasion and spread patterns, thereby refining our understanding of this species' invasion history. We found that most North American A. glabripennis infestations were distinct, resulting from multiple independent introductions from the native range. Following their introduction, all invasive populations experienced a genetic bottleneck which was followed by a population expansion, with a few also showing secondary spread to satellite infestations. Our study provides a foundation for a genome-based biosurveillance tool that can be used to clarify the origin of intercepted individuals, allowing regulatory agencies to strengthen biosecurity measures against this invasive beetle.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基因组学追踪北美亚洲长角蠹入侵情况
生物入侵对生态和经济稳定构成了重大威胁,亚洲长角金龟子(Anoplophora glabripennis Motschulsky,ALB)等入侵害虫对森林生态系统造成了巨大破坏。有效的害虫管理有赖于对昆虫生物学和入侵历史的全面了解。本研究利用基因组学来填补这些知识空白,并为现有的生物监测框架提供信息。我们使用了 2768 个全基因组单核苷酸多态性来比较北美的入侵草翅蜉蝣种群,利用基因组变异来追踪其入侵来源和传播模式,从而加深我们对该物种入侵历史的了解。我们发现,大多数北美草翅蜉蝣种群的入侵都是不同的,是由从原生地多次独立引入造成的。引入后,所有入侵种群都经历了基因瓶颈,随后种群扩大,少数种群还出现了向卫星侵染区的二次扩散。我们的研究为基于基因组的生物监测工具奠定了基础,该工具可用于澄清截获个体的来源,使监管机构能够加强针对这种入侵甲虫的生物安全措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
期刊最新文献
Tracking the North American Asian Longhorned Beetle Invasion With Genomics Prioritizing Conservation Areas for the Hyacinth Macaw (Anodorhynchus hyacinthinus) in Brazil From Low-Coverage Genomic Data Genomic Data Support the Revision of Provenance Regions Delimitation for Scots Pine Sex Pheromone Mediates Resource Partitioning Between Drosophila melanogaster and D. suzukii Estimating Demographic Parameters for Bearded Seals, Erignathus barbatus, in Alaska Using Close-Kin Mark-Recapture Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1