{"title":"Useful central mechanical circulatory support system for critical biventricular heart failure associated with high pulmonary vascular resistance","authors":"Naoki Tadokoro, Satoshi Kainuma, Kohei Tonai, Tetsuya Koyamoto, Naonori Kawamoto, Takashi Kakuta, Kimito Minami, Hiroshi Nishioka, Yasumasa Tsukamoto, Satsuki Fukushima","doi":"10.1111/aor.14906","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Peripheral veno-arterial extracorporeal membrane oxygenation (ECMO) is a powerful life-saving tool; however, it can sometimes induce severe pulmonary edema in patients with critical heart failure. We report favorable outcomes in critically ill patients by using a central ECMO system with an innovative blood perfusion method.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We analyzed 10 patients with severe heart failure and pulmonary edema who were treated with the central ECMO system at our institution between April 2022 and October 2023. The system consists of central cannulation with two inflows from the right atrium and left ventricle, and two outflows to the aorta and pulmonary artery, connected by two Y-connectors to a single ECMO circuit (RALV-AOPA ECMO). In this system, blood flow to the pulmonary artery is adjusted and mean pulmonary artery pressure is limited to <20 mm Hg, which reduces right ventricular afterload and prevents the worsening of pulmonary edema and hemorrhage.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Six patients were diagnosed with fulminant lymphocytic myocarditis, and four were diagnosed with coronavirus disease 2019-related myocardial injury. The ejection fraction was 6.5 ± 4.1%. The average intraoperative pulmonary vascular resistance was 4.6 ± 1.3 Wood units. After 24 h, the mean pulmonary arterial pressure was 12.8 ± 4.3 mm Hg, and pulmonary vascular resistance was 1.5 ± 0.3 Wood units. The duration of central RALV-AOPA ECMO was 3.7 ± 2.1 days. Finally, six patients were weaned, three received HeartMate3, and one received heart transplantation. At follow-up, all patients remained alive (428 ± 208 days), and two patients experienced cerebrovascular accidents without any lasting sequelae.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The central RALV-AOPA ECMO is an innovative system that achieves early improvement in pulmonary vascular resistance and is safe and feasible for patients with acute biventricular failure and pulmonary edema.</p>\n </section>\n </div>","PeriodicalId":8450,"journal":{"name":"Artificial organs","volume":"49 3","pages":"469-476"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial organs","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aor.14906","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Peripheral veno-arterial extracorporeal membrane oxygenation (ECMO) is a powerful life-saving tool; however, it can sometimes induce severe pulmonary edema in patients with critical heart failure. We report favorable outcomes in critically ill patients by using a central ECMO system with an innovative blood perfusion method.
Methods
We analyzed 10 patients with severe heart failure and pulmonary edema who were treated with the central ECMO system at our institution between April 2022 and October 2023. The system consists of central cannulation with two inflows from the right atrium and left ventricle, and two outflows to the aorta and pulmonary artery, connected by two Y-connectors to a single ECMO circuit (RALV-AOPA ECMO). In this system, blood flow to the pulmonary artery is adjusted and mean pulmonary artery pressure is limited to <20 mm Hg, which reduces right ventricular afterload and prevents the worsening of pulmonary edema and hemorrhage.
Results
Six patients were diagnosed with fulminant lymphocytic myocarditis, and four were diagnosed with coronavirus disease 2019-related myocardial injury. The ejection fraction was 6.5 ± 4.1%. The average intraoperative pulmonary vascular resistance was 4.6 ± 1.3 Wood units. After 24 h, the mean pulmonary arterial pressure was 12.8 ± 4.3 mm Hg, and pulmonary vascular resistance was 1.5 ± 0.3 Wood units. The duration of central RALV-AOPA ECMO was 3.7 ± 2.1 days. Finally, six patients were weaned, three received HeartMate3, and one received heart transplantation. At follow-up, all patients remained alive (428 ± 208 days), and two patients experienced cerebrovascular accidents without any lasting sequelae.
Conclusions
The central RALV-AOPA ECMO is an innovative system that achieves early improvement in pulmonary vascular resistance and is safe and feasible for patients with acute biventricular failure and pulmonary edema.
期刊介绍:
Artificial Organs is the official peer reviewed journal of The International Federation for Artificial Organs (Members of the Federation are: The American Society for Artificial Internal Organs, The European Society for Artificial Organs, and The Japanese Society for Artificial Organs), The International Faculty for Artificial Organs, the International Society for Rotary Blood Pumps, The International Society for Pediatric Mechanical Cardiopulmonary Support, and the Vienna International Workshop on Functional Electrical Stimulation. Artificial Organs publishes original research articles dealing with developments in artificial organs applications and treatment modalities and their clinical applications worldwide. Membership in the Societies listed above is not a prerequisite for publication. Articles are published without charge to the author except for color figures and excess page charges as noted.