Durlobactam to boost the clinical utility of standard of care β-lactams against Mycobacterium abscessus lung disease.

IF 4.1 2区 医学 Q2 MICROBIOLOGY Antimicrobial Agents and Chemotherapy Pub Date : 2025-01-31 Epub Date: 2024-11-20 DOI:10.1128/aac.01046-24
Dereje A Negatu, Wassihun Wedajo Aragaw, Tewodros T Gebresilase, Sindhuja Paruchuri, Firat Kaya, Sung Jae Shin, Peter Sander, Véronique Dartois, Thomas Dick
{"title":"Durlobactam to boost the clinical utility of standard of care β-lactams against <i>Mycobacterium abscessus</i> lung disease.","authors":"Dereje A Negatu, Wassihun Wedajo Aragaw, Tewodros T Gebresilase, Sindhuja Paruchuri, Firat Kaya, Sung Jae Shin, Peter Sander, Véronique Dartois, Thomas Dick","doi":"10.1128/aac.01046-24","DOIUrl":null,"url":null,"abstract":"<p><p>β-Lactams present several desirable pharmacodynamic features leading to the rapid eradication of many bacterial pathogens. Imipenem (IPM) and cefoxitin (FOX) are injectable β-lactams recommended during the intensive treatment phase of pulmonary infections caused by <i>Mycobacterium abscessus</i> (Mab). However, their potency against Mab is many-fold lower than against Gram-positive and Gram-negative pathogens for which they were optimized, putting into question their clinical utility. Here, we show that adding the recently approved durlobactam-sulbactam (DUR-SUL) pair to either IPM or FOX achieves growth inhibition, bactericidal, and cytolytic activity at concentrations that are within those achieved in patients and below the clinical breakpoints established for each agent. Synergies between DUR-SUL and IPM or FOX were confirmed across a large panel of clinical isolates. Through <i>in vitro</i> resistant mutant selection, we also show that adding DUR-SUL abrogates acquired resistance to IPM and FOX. Since the use of β-lactam injectables is firmly grounded in clinical practice during the intensive treatment phase of Mab pulmonary disease, their potentiation by FDA-approved DUR-SUL to bring minimum inhibitory concentration distributions within achievable concentration ranges could offer significant short-term benefits to patients, while novel β-lactam combinations are optimized specifically against Mab pulmonary infections, for which no reliable cure exists.</p>","PeriodicalId":8152,"journal":{"name":"Antimicrobial Agents and Chemotherapy","volume":" ","pages":"e0104624"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784023/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antimicrobial Agents and Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/aac.01046-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

β-Lactams present several desirable pharmacodynamic features leading to the rapid eradication of many bacterial pathogens. Imipenem (IPM) and cefoxitin (FOX) are injectable β-lactams recommended during the intensive treatment phase of pulmonary infections caused by Mycobacterium abscessus (Mab). However, their potency against Mab is many-fold lower than against Gram-positive and Gram-negative pathogens for which they were optimized, putting into question their clinical utility. Here, we show that adding the recently approved durlobactam-sulbactam (DUR-SUL) pair to either IPM or FOX achieves growth inhibition, bactericidal, and cytolytic activity at concentrations that are within those achieved in patients and below the clinical breakpoints established for each agent. Synergies between DUR-SUL and IPM or FOX were confirmed across a large panel of clinical isolates. Through in vitro resistant mutant selection, we also show that adding DUR-SUL abrogates acquired resistance to IPM and FOX. Since the use of β-lactam injectables is firmly grounded in clinical practice during the intensive treatment phase of Mab pulmonary disease, their potentiation by FDA-approved DUR-SUL to bring minimum inhibitory concentration distributions within achievable concentration ranges could offer significant short-term benefits to patients, while novel β-lactam combinations are optimized specifically against Mab pulmonary infections, for which no reliable cure exists.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
杜洛巴坦提高了β-内酰胺类药物对脓肿分枝杆菌肺病的临床疗效。
β-内酰胺类药物具有多种理想的药效学特征,可快速根除许多细菌病原体。亚胺培南(IPM)和头孢西丁(FOX)是由脓肿分枝杆菌(Mab)引起的肺部感染强化治疗阶段推荐使用的注射用β-内酰胺类药物。然而,它们对脓肿分枝杆菌的药效比对革兰氏阳性和革兰氏阴性病原体的药效低许多倍,这使它们的临床实用性受到质疑。在这里,我们展示了在 IPM 或 FOX 中加入最近获批的杜鲁巴坦-舒巴坦(DUR-SUL)配对药剂可实现生长抑制、杀菌和细胞溶解活性,其浓度在患者体内达到的浓度范围内,且低于为每种药剂设定的临床断点。DUR-SUL 与 IPM 或 FOX 的协同作用在大量临床分离物中得到了证实。通过体外耐药性突变体的选择,我们还发现添加 DUR-SUL 可消除对 IPM 和 FOX 的获得性耐药性。由于在马布肺病的强化治疗阶段,β-内酰胺类注射剂的使用已深入临床实践,因此使用经 FDA 批准的 DUR-SUL 强化这些药物,使最小抑制浓度分布在可达到的浓度范围内,可为患者带来显著的短期益处,同时优化新型β-内酰胺类药物的组合,专门用于治疗马布肺部感染,目前尚无可靠的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
8.20%
发文量
762
审稿时长
3 months
期刊介绍: Antimicrobial Agents and Chemotherapy (AAC) features interdisciplinary studies that build our understanding of the underlying mechanisms and therapeutic applications of antimicrobial and antiparasitic agents and chemotherapy.
期刊最新文献
Deciphering meropenem persistence in Acinetobacter baumannii facilitates discovery of anti-persister activity of thymol. Efficacy, safety, and anti-inflammatory properties of the switch to a doravirine-based regimen among antiretroviral-experienced elderly people living with HIV-1: the DORAGE cohort. Efficient in vitro assay for evaluating drug efficacy and synergy against emerging SARS-CoV-2 strains. Single-dose tolerability and pharmacokinetics of leritrelvir in Chinese patients with hepatic impairment and healthy matched controls. TAC1b mutation in Candida auris decreases manogepix susceptibility owing to increased CDR1 expression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1