CSPG4 involvement in endometrial decidualization contributes to the pathogenesis of preeclampsia.

IF 3.1 2区 生物学 Q2 REPRODUCTIVE BIOLOGY Biology of Reproduction Pub Date : 2024-11-19 DOI:10.1093/biolre/ioae167
Tianying Zhang, Hua Li, Enhui Jiang, Liang Zhang, Lisheng Liu, Cong Zhang
{"title":"CSPG4 involvement in endometrial decidualization contributes to the pathogenesis of preeclampsia.","authors":"Tianying Zhang, Hua Li, Enhui Jiang, Liang Zhang, Lisheng Liu, Cong Zhang","doi":"10.1093/biolre/ioae167","DOIUrl":null,"url":null,"abstract":"<p><p>Preeclampsia (PE) is a condition of pregnancy in which symptoms of hypertension develop after 20 weeks of gestation. it can lead to placental dysfunction, maternal and perinatal mortality and morbidity. The incidence of PE is increasing, posing a serious threat to the lives of pregnant women and their unborn children. Currently, most of the research on the pathogenesis of PE has focused on placenta, However, maternal decidualization is the basis for placental formation and growth. CSPG4 (Chondroitin sulfate proteoglycan 4) is a transmembrane protein that plays a role in cell proliferation, invasion, and migration. However, its function during decidualization is not yet understood. In this study, we investigated the role of CSPG4 and found that its expression was significantly down-regulated in the decidual tissue of patients with severe PE compared to normal pregnant women. During artificially induced decidualization, CSPG4 expression was significantly increased. Knockdown of CSPG4 by siRNA inhibited decidualization, which, in turn, inhibited the invasion of trophoblast cells. In both pseudopregnant and pregnant mice, endometrial stromal cells proliferated rapidly and Cspg4 expression increased during decidualization. Therefore, we believe that CSPG4 plays a crucial role in the process of decidualization. The defect in decidualization caused by abnormal CSPG4 expression could lead to insufficient trophoblast invasion, ultimately contributing to the occurrence of PE.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biolre/ioae167","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Preeclampsia (PE) is a condition of pregnancy in which symptoms of hypertension develop after 20 weeks of gestation. it can lead to placental dysfunction, maternal and perinatal mortality and morbidity. The incidence of PE is increasing, posing a serious threat to the lives of pregnant women and their unborn children. Currently, most of the research on the pathogenesis of PE has focused on placenta, However, maternal decidualization is the basis for placental formation and growth. CSPG4 (Chondroitin sulfate proteoglycan 4) is a transmembrane protein that plays a role in cell proliferation, invasion, and migration. However, its function during decidualization is not yet understood. In this study, we investigated the role of CSPG4 and found that its expression was significantly down-regulated in the decidual tissue of patients with severe PE compared to normal pregnant women. During artificially induced decidualization, CSPG4 expression was significantly increased. Knockdown of CSPG4 by siRNA inhibited decidualization, which, in turn, inhibited the invasion of trophoblast cells. In both pseudopregnant and pregnant mice, endometrial stromal cells proliferated rapidly and Cspg4 expression increased during decidualization. Therefore, we believe that CSPG4 plays a crucial role in the process of decidualization. The defect in decidualization caused by abnormal CSPG4 expression could lead to insufficient trophoblast invasion, ultimately contributing to the occurrence of PE.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CSPG4参与子宫内膜蜕膜化是子痫前期的发病机制之一。
子痫前期(PE)是一种在妊娠 20 周后出现高血压症状的妊娠疾病,可导致胎盘功能障碍、孕产妇和围产期死亡和发病。PE 的发病率不断上升,严重威胁着孕妇及其胎儿的生命安全。然而,母体蜕膜化是胎盘形成和生长的基础。CSPG4(硫酸软骨素蛋白多糖 4)是一种跨膜蛋白,在细胞增殖、侵袭和迁移中发挥作用。然而,它在蜕膜化过程中的功能尚不清楚。本研究调查了 CSPG4 的作用,发现与正常孕妇相比,CSPG4 在重度 PE 患者蜕膜组织中的表达明显下调。在人工诱导的蜕膜化过程中,CSPG4的表达明显增加。通过 siRNA 敲除 CSPG4 可抑制蜕膜化,进而抑制滋养层细胞的侵袭。在假孕小鼠和妊娠小鼠中,子宫内膜基质细胞在蜕膜化过程中迅速增殖,CSPG4表达增加。因此,我们认为 CSPG4 在蜕膜化过程中起着至关重要的作用。CSPG4 表达异常引起的蜕膜化缺陷可能导致滋养细胞侵袭不足,最终导致 PE 的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology of Reproduction
Biology of Reproduction 生物-生殖生物学
CiteScore
6.30
自引率
5.60%
发文量
214
审稿时长
1 months
期刊介绍: Biology of Reproduction (BOR) is the official journal of the Society for the Study of Reproduction and publishes original research on a broad range of topics in the field of reproductive biology, as well as reviews on topics of current importance or controversy. BOR is consistently one of the most highly cited journals publishing original research in the field of reproductive biology.
期刊最新文献
SCGB1D4 Downregulation Links to Fibrosis in Intrauterine Adhesion Patients and Rat Models. Pyrroloquinoline-quinone supplementation restores ovarian function and oocyte quality in a mouse model of advanced maternal age. Attenuation of Ampullary Anoctamin 1 by the Peritoneal Fluid in Rhesus Macaques with Spontaneous Endometriosis. CSPG4 involvement in endometrial decidualization contributes to the pathogenesis of preeclampsia. CTNND1 affects trophoblast proliferation and specification during human embryo implantation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1