Zongrui Xing, Yong Ma, Xiangyan Jiang, Huiguo Qing, Yuxia Wu, Shengfu Che, Zhongti Gao, Keshen Wang, Tao Wang, Qichen He, Zhigang Li, Bin Zhao, Wenbo Liu, Haonan Sun, Zeyuan Yu
{"title":"Targeting the mevalonate pathway enhances the efficacy of 5-fluorouracil by regulating pyroptosis.","authors":"Zongrui Xing, Yong Ma, Xiangyan Jiang, Huiguo Qing, Yuxia Wu, Shengfu Che, Zhongti Gao, Keshen Wang, Tao Wang, Qichen He, Zhigang Li, Bin Zhao, Wenbo Liu, Haonan Sun, Zeyuan Yu","doi":"10.1007/s12032-024-02557-5","DOIUrl":null,"url":null,"abstract":"<p><p>The 5-fluorouracil (5-FU)-based chemotherapy regimen is a primary strategy for treating pancreatic cancer (PC). However, challenges related to 5-FU resistance persist. Investigating the mechanisms of 5-FU resistance and identifying a clinically viable therapeutic strategy are crucial for improving the prognosis of PC. Here, through clinical samples analysis, we found that the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting enzyme in mevalonate metabolism, is negatively correlated with the efficacy of 5-FU treatment. There is a significant correlation between HMGCR and the pyroptosis marker gasdermin D (GSDMD), and the HMGCR inhibitor simvastatin can significantly inhibit the activation of pyroptosis signaling. The exogenous addition of geranylgeranyl pyrophosphate (GGPP), a key metabolite of the mevalonate pathway, can significantly reduce sensitivity to 5-FU, and simvastatin combined with 5-FU demonstrates a strong synergistic effect. Furthermore, in organoid models and genetically engineered mice with spontaneous PC, the combination of simvastatin and 5-FU significantly inhibits tumor growth. In conclusion, our study reveals the critical role of the mevalonate pathway in 5-FU resistance and proposes a clinically feasible combination therapy strategy.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":"42 1","pages":"9"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-024-02557-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The 5-fluorouracil (5-FU)-based chemotherapy regimen is a primary strategy for treating pancreatic cancer (PC). However, challenges related to 5-FU resistance persist. Investigating the mechanisms of 5-FU resistance and identifying a clinically viable therapeutic strategy are crucial for improving the prognosis of PC. Here, through clinical samples analysis, we found that the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting enzyme in mevalonate metabolism, is negatively correlated with the efficacy of 5-FU treatment. There is a significant correlation between HMGCR and the pyroptosis marker gasdermin D (GSDMD), and the HMGCR inhibitor simvastatin can significantly inhibit the activation of pyroptosis signaling. The exogenous addition of geranylgeranyl pyrophosphate (GGPP), a key metabolite of the mevalonate pathway, can significantly reduce sensitivity to 5-FU, and simvastatin combined with 5-FU demonstrates a strong synergistic effect. Furthermore, in organoid models and genetically engineered mice with spontaneous PC, the combination of simvastatin and 5-FU significantly inhibits tumor growth. In conclusion, our study reveals the critical role of the mevalonate pathway in 5-FU resistance and proposes a clinically feasible combination therapy strategy.
期刊介绍:
Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.