Asher M Kantor, Octavio A C Talyuli, William R Reid, Patricia Hessab Alvarenga, Jasmine Booker, Jingyi Lin, Alexander W E Franz, Carolina Barillas-Mury
{"title":"Identification of a dengue 2 virus envelope protein receptor in <i>Aedes aegypti</i> critical for viral midgut infection.","authors":"Asher M Kantor, Octavio A C Talyuli, William R Reid, Patricia Hessab Alvarenga, Jasmine Booker, Jingyi Lin, Alexander W E Franz, Carolina Barillas-Mury","doi":"10.1073/pnas.2417750121","DOIUrl":null,"url":null,"abstract":"<p><p>The establishment of a productive dengue virus (DENV) infection in the midgut epithelial cells of <i>Aedes aegypti</i> is critical for the viral transmission cycle. The hypothesis that DENV virions interact directly with specific mosquito midgut proteins was explored. We found that DENV serotype 2 (DENV2) pretreated with trypsin interacted with a single 31 kDa protein, identified as AAEL011180 by protein mass spectrometry. This putative receptor is a highly conserved protein and has orthologs in culicine and anopheline mosquitoes. We confirmed that impairing the expression of AAEL011180 in the midgut of <i>Ae. aegypti</i> females abolished the interaction with DENV2, and the virus also bound to immobilized recombinant purified receptor. Furthermore, recombinant DENV2 surface E glycoprotein bound to recombinant AAEL011180 with high affinity (38.2 nM) in binding kinetic analysis using surface plasmon resonance. The gene for this DENV2 E protein receptor (EPrRec) was disrupted, but since the gene is essential in <i>Ae. aegypti,</i> only heterozygote knockout (ΔEPrRec<sup>+/-</sup>) females could be recovered. Further reducing EPrRec mRNA expression in the midgut of ΔEPrRec<sup>+/-</sup> females by systemic dsRNA injection significantly reduced the prevalence of DENV2 midgut infection. EPrRec also interacts with heat shock protein 70 cognate 3 (Hsc70-3), and silencing Hsc70-3 expression in ΔEPrRec females also reduced the prevalence of DENV2 midgut infection.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 48","pages":"e2417750121"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2417750121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The establishment of a productive dengue virus (DENV) infection in the midgut epithelial cells of Aedes aegypti is critical for the viral transmission cycle. The hypothesis that DENV virions interact directly with specific mosquito midgut proteins was explored. We found that DENV serotype 2 (DENV2) pretreated with trypsin interacted with a single 31 kDa protein, identified as AAEL011180 by protein mass spectrometry. This putative receptor is a highly conserved protein and has orthologs in culicine and anopheline mosquitoes. We confirmed that impairing the expression of AAEL011180 in the midgut of Ae. aegypti females abolished the interaction with DENV2, and the virus also bound to immobilized recombinant purified receptor. Furthermore, recombinant DENV2 surface E glycoprotein bound to recombinant AAEL011180 with high affinity (38.2 nM) in binding kinetic analysis using surface plasmon resonance. The gene for this DENV2 E protein receptor (EPrRec) was disrupted, but since the gene is essential in Ae. aegypti, only heterozygote knockout (ΔEPrRec+/-) females could be recovered. Further reducing EPrRec mRNA expression in the midgut of ΔEPrRec+/- females by systemic dsRNA injection significantly reduced the prevalence of DENV2 midgut infection. EPrRec also interacts with heat shock protein 70 cognate 3 (Hsc70-3), and silencing Hsc70-3 expression in ΔEPrRec females also reduced the prevalence of DENV2 midgut infection.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.