Isabelle Heifetz Ament, Nicole DeBruyne, Feng Wang, Lan Lin
{"title":"Long-read RNA sequencing: a transformative technology for exploring transcriptome complexity in human diseases.","authors":"Isabelle Heifetz Ament, Nicole DeBruyne, Feng Wang, Lan Lin","doi":"10.1016/j.ymthe.2024.11.025","DOIUrl":null,"url":null,"abstract":"<p><p>Long-read RNA sequencing (RNA-seq) is emerging as a powerful and versatile technology for studying human transcriptomes. By enabling the end-to-end sequencing of full-length transcripts, long-read RNA-seq opens up avenues for investigating various RNA species and features that cannot be reliably interrogated by standard short-read RNA-seq methods. In this review, we present an overview of long-read RNA-seq, delineating its strengths over short-read RNA-seq, as well as summarizing recent advances in experimental and computational approaches to boost the power of long-read based transcriptomics. We describe a wide range of applications of long-read RNA-seq, and highlight its expanding role as a foundational technology for exploring transcriptome variations in human diseases.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.11.025","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Long-read RNA sequencing (RNA-seq) is emerging as a powerful and versatile technology for studying human transcriptomes. By enabling the end-to-end sequencing of full-length transcripts, long-read RNA-seq opens up avenues for investigating various RNA species and features that cannot be reliably interrogated by standard short-read RNA-seq methods. In this review, we present an overview of long-read RNA-seq, delineating its strengths over short-read RNA-seq, as well as summarizing recent advances in experimental and computational approaches to boost the power of long-read based transcriptomics. We describe a wide range of applications of long-read RNA-seq, and highlight its expanding role as a foundational technology for exploring transcriptome variations in human diseases.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.