Dalia O Saleh, Nesma M E Abo El Nasr, Yosra A Hussien, Marawan Abd El-Baset, Kawkab A Ahmed
{"title":"Cyclophosphamide-induced testicular injury: the role of chrysin in mitigating iron overload and ferroptosis.","authors":"Dalia O Saleh, Nesma M E Abo El Nasr, Yosra A Hussien, Marawan Abd El-Baset, Kawkab A Ahmed","doi":"10.1007/s00210-024-03519-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the beneficial effects of chrysin against cyclophosphamide (CP)-induced testicular toxicity in rats across several parameters, including hormones, oxidative stress, inflammation, apoptosis, and protein expression. Rats were pretreated with oral doses of chrysin at 25, 50, or 100 mg/kg daily for 7 days. On the 8th day, all groups except controls received CP (200 mg/kg) injection. Chrysin doses continued for 7 more days. Hormones, oxidative stress markers, inflammatory cytokines, apoptosis regulators, and iron regulatory proteins were assessed. CP decreased testosterone, inhibin B, GSH, and GPx4 and increased FSH, cholesterol, MDA, IL-6, and BAX. It also drastically reduced TfR1, liprin, and IREB2. Chrysin dose-dependently counteracted these effects. The highest 100 mg/kg chrysin dose increased testosterone, inhibin B, GSH, GPx4, BCL2, TfR1, liprin, and IREB2 while decreasing FSH, cholesterol, MDA, IL-6, and BAX close to control levels. There were also significant incremental benefits for testosterone, inhibin B, and other parameters with higher chrysin doses. Chrysin dose-dependently attenuated CP-induced hormonal dysfunction, oxidative stress, inflammation, apoptosis, and iron-regulatory protein suppression. The maximum dose showed the most optimal protective effects in restoring the testicular toxicity markers. These results validate the promising spermatoprotective properties of chrysin against chemotherapeutic germ cell damage.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03519-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluated the beneficial effects of chrysin against cyclophosphamide (CP)-induced testicular toxicity in rats across several parameters, including hormones, oxidative stress, inflammation, apoptosis, and protein expression. Rats were pretreated with oral doses of chrysin at 25, 50, or 100 mg/kg daily for 7 days. On the 8th day, all groups except controls received CP (200 mg/kg) injection. Chrysin doses continued for 7 more days. Hormones, oxidative stress markers, inflammatory cytokines, apoptosis regulators, and iron regulatory proteins were assessed. CP decreased testosterone, inhibin B, GSH, and GPx4 and increased FSH, cholesterol, MDA, IL-6, and BAX. It also drastically reduced TfR1, liprin, and IREB2. Chrysin dose-dependently counteracted these effects. The highest 100 mg/kg chrysin dose increased testosterone, inhibin B, GSH, GPx4, BCL2, TfR1, liprin, and IREB2 while decreasing FSH, cholesterol, MDA, IL-6, and BAX close to control levels. There were also significant incremental benefits for testosterone, inhibin B, and other parameters with higher chrysin doses. Chrysin dose-dependently attenuated CP-induced hormonal dysfunction, oxidative stress, inflammation, apoptosis, and iron-regulatory protein suppression. The maximum dose showed the most optimal protective effects in restoring the testicular toxicity markers. These results validate the promising spermatoprotective properties of chrysin against chemotherapeutic germ cell damage.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.