Katariina Seppälä , Inés Reigada , Olli Matilainen , Tomi Rantamäki , Leena Hanski
{"title":"Anesthetic-like effects of ketamine in C. elegans","authors":"Katariina Seppälä , Inés Reigada , Olli Matilainen , Tomi Rantamäki , Leena Hanski","doi":"10.1016/j.neuroscience.2024.11.042","DOIUrl":null,"url":null,"abstract":"<div><div>Transparency of <em>Caenorhabditis elegans</em> enables microscopic <em>in vivo</em> imaging of cellular processes, but immobilization is required due to high locomotor activity. Here, anesthetic-like effects of dissociate anesthetic ketamine in adult <em>C. elegans</em> are presented using video recordings and infrared-based automated activity tracking. Ketamine caused a reversible blockade of locomotion at a similar concentration (20–50 mM) at which conventionally used immobilizing agent sodium azide (NaN<sub>3</sub>) produces paralysis. The levels of immobilization at 20 mM ketamine enabled fluorescent and brightfield imaging. The worms’ locomotory activity recovered fully after ketamine exposure and no acute toxicity was observed. However, a marked chemosensation deficiency was noted immediately after 20 mM ketamine exposure. Short-term ketamine treatment did not show signs of SKN-1 (skinhead-1) activation, a marker of the stress response associated with NaN<sub>3.</sub> In sum, our results show ketamine’s potential as a non-toxic nematode immobilizing agent and rationalize <em>C. elegans</em> as a model organism to understand its pharmacology.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"564 ","pages":"Pages 79-82"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452224006304","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Transparency of Caenorhabditis elegans enables microscopic in vivo imaging of cellular processes, but immobilization is required due to high locomotor activity. Here, anesthetic-like effects of dissociate anesthetic ketamine in adult C. elegans are presented using video recordings and infrared-based automated activity tracking. Ketamine caused a reversible blockade of locomotion at a similar concentration (20–50 mM) at which conventionally used immobilizing agent sodium azide (NaN3) produces paralysis. The levels of immobilization at 20 mM ketamine enabled fluorescent and brightfield imaging. The worms’ locomotory activity recovered fully after ketamine exposure and no acute toxicity was observed. However, a marked chemosensation deficiency was noted immediately after 20 mM ketamine exposure. Short-term ketamine treatment did not show signs of SKN-1 (skinhead-1) activation, a marker of the stress response associated with NaN3. In sum, our results show ketamine’s potential as a non-toxic nematode immobilizing agent and rationalize C. elegans as a model organism to understand its pharmacology.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.