Axel Touchard, Samuel D Robinson, Hadrien Lalagüe, Steven Ascoët, Arnaud Billet, Alain Dejean, Nathan J Téné, Frédéric Petitclerc, Valérie Troispoux, Michel Treilhou, Elsa Bonnafé, Irina Vetter, Joel Vizueta, Corrie S Moreau, Jérôme Orivel, Niklas Tysklind
{"title":"Adaptive trade-offs between vertebrate defence and insect predation drive Amazonian ant venom evolution.","authors":"Axel Touchard, Samuel D Robinson, Hadrien Lalagüe, Steven Ascoët, Arnaud Billet, Alain Dejean, Nathan J Téné, Frédéric Petitclerc, Valérie Troispoux, Michel Treilhou, Elsa Bonnafé, Irina Vetter, Joel Vizueta, Corrie S Moreau, Jérôme Orivel, Niklas Tysklind","doi":"10.1098/rspb.2024.2184","DOIUrl":null,"url":null,"abstract":"<p><p>Stinging ants have diversified into various ecological niches, and selective pressures may have contributed to shape the composition of their venom. To explore the drivers underlying venom variation in ants, we sampled 15 South American rainforest species and recorded a range of traits, including ecology, morphology and venom bioactivities. Principal component analysis of both morphological and venom bioactivity traits reveals that stinging ants display two functional strategies where species have evolved towards either an exclusively offensive venom or a multi-functional venom. Additionally, phylogenetic comparative analysis indicates that venom function (predatory, defensive or both) and mandible morphology correlate with venom bioactivity and volume. Further analysis of the venom biochemistry of the 15 species revealed switches between cytotoxic and neurotoxic venom compositions among species. Our study supports an evolutionary trade-off between the ability of venom to deter vertebrate predators and to paralyse insect prey which are correlated with different venom compositions and life-history strategies among Formicidae.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"291 2035","pages":"20242184"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576106/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.2184","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stinging ants have diversified into various ecological niches, and selective pressures may have contributed to shape the composition of their venom. To explore the drivers underlying venom variation in ants, we sampled 15 South American rainforest species and recorded a range of traits, including ecology, morphology and venom bioactivities. Principal component analysis of both morphological and venom bioactivity traits reveals that stinging ants display two functional strategies where species have evolved towards either an exclusively offensive venom or a multi-functional venom. Additionally, phylogenetic comparative analysis indicates that venom function (predatory, defensive or both) and mandible morphology correlate with venom bioactivity and volume. Further analysis of the venom biochemistry of the 15 species revealed switches between cytotoxic and neurotoxic venom compositions among species. Our study supports an evolutionary trade-off between the ability of venom to deter vertebrate predators and to paralyse insect prey which are correlated with different venom compositions and life-history strategies among Formicidae.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.