Exploration the effective components of Gastrodia elata in improving cerebral ischemia reperfusion injury based on "Spectrum-effect" correlation and zebrafish verification experiment.
Zilu Liu, Mengting Wang, Ximeng Ding, Jing Tian, Dan Sun, Xinrui Gao, Chuanshan Jin, Daiyin Peng, Shuangying Gui, Xiaoli Wang
{"title":"Exploration the effective components of Gastrodia elata in improving cerebral ischemia reperfusion injury based on \"Spectrum-effect\" correlation and zebrafish verification experiment.","authors":"Zilu Liu, Mengting Wang, Ximeng Ding, Jing Tian, Dan Sun, Xinrui Gao, Chuanshan Jin, Daiyin Peng, Shuangying Gui, Xiaoli Wang","doi":"10.1016/j.phymed.2024.156211","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gastrodia elata (GE) has been widely used in clinical practice for many years with the functions of relieving stroke, suppressing liver Yang, dispelling wind and clearing collaterals. Our group's previous experimental studies have proved that GE has therapeutic effect on cerebral ischemia reperfusion injury (CIRI) (Ding et al., 2022). However, the active components of GE in treating CIRI remain unclear and require further research.</p><p><strong>Purpose: </strong>The purpose of this paper was to explore the potential effective components of GE improving CIRI based on the \"Spectrum-effect\" correlation. Zebrafish model was used for verification in vivo experimental.</p><p><strong>Materials and methods: </strong>First, the absorption components and metabolites of GE in rat serum were identified using ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS). Second, pharmacodynamic indexes were determined by ELISA kit method, and the effect-time curve of each pharmacodynamic indexes was established. The potential compounds were screened using the statistical method of grey correlation between pharmacodynamic indicator and component response. Finally, the zebrafish CIRI model was successfully established, and the in vivo effect of the active components of GE was verified intuitively.</p><p><strong>Results: </strong>45 chemical components were detected in GE. A total of 87 active components in serum of GE were identified including 25 prototype components and 62 metabolites. GE can improve CIRI by regulating the levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), MDA levels and SOD levels. It was found that p‑hydroxy benzaldehyde (PHB), p-hydroxybenzyl alcohol (PHBA) and gastrodin (GA) of GE were the possibly main active components by grey correlation statistics. The in vivo experiments of zebrafish model showed that PHB, PHBA, and GA have the ability to ameliorate cerebral thrombosis by regulation of oxidative stress and apoptosis.</p><p><strong>Conclusions: </strong>The potential active components of GE on CIRI were initially excavated using UHPLC-Q-TOF-MS/MS, pharmacodynamics, and in vivo experiments of zebrafish model. It makes up for the disadvantages of separate research on chemical components and pharmacodynamics, and reflects the material basis of pharmacodynamics more objectively. It has provided theoretical basis for further quality evaluation and scientific foundation for rational drug using of GE in clinical.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"135 ","pages":"156211"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.phymed.2024.156211","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Gastrodia elata (GE) has been widely used in clinical practice for many years with the functions of relieving stroke, suppressing liver Yang, dispelling wind and clearing collaterals. Our group's previous experimental studies have proved that GE has therapeutic effect on cerebral ischemia reperfusion injury (CIRI) (Ding et al., 2022). However, the active components of GE in treating CIRI remain unclear and require further research.
Purpose: The purpose of this paper was to explore the potential effective components of GE improving CIRI based on the "Spectrum-effect" correlation. Zebrafish model was used for verification in vivo experimental.
Materials and methods: First, the absorption components and metabolites of GE in rat serum were identified using ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS). Second, pharmacodynamic indexes were determined by ELISA kit method, and the effect-time curve of each pharmacodynamic indexes was established. The potential compounds were screened using the statistical method of grey correlation between pharmacodynamic indicator and component response. Finally, the zebrafish CIRI model was successfully established, and the in vivo effect of the active components of GE was verified intuitively.
Results: 45 chemical components were detected in GE. A total of 87 active components in serum of GE were identified including 25 prototype components and 62 metabolites. GE can improve CIRI by regulating the levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), MDA levels and SOD levels. It was found that p‑hydroxy benzaldehyde (PHB), p-hydroxybenzyl alcohol (PHBA) and gastrodin (GA) of GE were the possibly main active components by grey correlation statistics. The in vivo experiments of zebrafish model showed that PHB, PHBA, and GA have the ability to ameliorate cerebral thrombosis by regulation of oxidative stress and apoptosis.
Conclusions: The potential active components of GE on CIRI were initially excavated using UHPLC-Q-TOF-MS/MS, pharmacodynamics, and in vivo experiments of zebrafish model. It makes up for the disadvantages of separate research on chemical components and pharmacodynamics, and reflects the material basis of pharmacodynamics more objectively. It has provided theoretical basis for further quality evaluation and scientific foundation for rational drug using of GE in clinical.
期刊介绍:
Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.