P Naga Srinivasu, G Jaya Lakshmi, Abhishek Gudipalli, Sujatha Canavoy Narahari, Jana Shafi, Marcin Woźniak, Muhammad Fazal Ijaz
{"title":"XAI-driven CatBoost multi-layer perceptron neural network for analyzing breast cancer.","authors":"P Naga Srinivasu, G Jaya Lakshmi, Abhishek Gudipalli, Sujatha Canavoy Narahari, Jana Shafi, Marcin Woźniak, Muhammad Fazal Ijaz","doi":"10.1038/s41598-024-79620-8","DOIUrl":null,"url":null,"abstract":"<p><p>Early diagnosis of breast cancer is exceptionally important in signifying the treatment results, of women's health. The present study outlines a novel approach for analyzing breast cancer data by using the CatBoost classification model with a multi-layer perceptron neural network (CatBoost+MLP). Explainable artificial intelligence techniques are used to cohere with the proposed CatBoost with the MLP model. The proposed model aims to enhance the interpretability of predictions in breast cancer diagnosis by leveraging the benefits of CatBoost classification technique in feature identification and also contributing towards the interpretability of the decision model. The proposed CatBoost+MLP has been evaluated using the Shapley additive explanations values to analyze the feature significance in decision-making. Initially, the feature engineering is done using the analysis of variance technique to identify the significant features. The MLP model alone and the CatBoost+MLP model are being analyzed using divergent performance metrics, and the results obtained are compared with contemporary breast cancer identification techniques.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"28674"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-79620-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Early diagnosis of breast cancer is exceptionally important in signifying the treatment results, of women's health. The present study outlines a novel approach for analyzing breast cancer data by using the CatBoost classification model with a multi-layer perceptron neural network (CatBoost+MLP). Explainable artificial intelligence techniques are used to cohere with the proposed CatBoost with the MLP model. The proposed model aims to enhance the interpretability of predictions in breast cancer diagnosis by leveraging the benefits of CatBoost classification technique in feature identification and also contributing towards the interpretability of the decision model. The proposed CatBoost+MLP has been evaluated using the Shapley additive explanations values to analyze the feature significance in decision-making. Initially, the feature engineering is done using the analysis of variance technique to identify the significant features. The MLP model alone and the CatBoost+MLP model are being analyzed using divergent performance metrics, and the results obtained are compared with contemporary breast cancer identification techniques.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.