Jian Zou, Zheqi Li, Neil Carleton, Steffi Oesterreich, Adrian V Lee, George C Tseng
{"title":"Mutual information for detecting multi-class biomarkers when integrating multiple bulk or single-cell transcriptomic studies.","authors":"Jian Zou, Zheqi Li, Neil Carleton, Steffi Oesterreich, Adrian V Lee, George C Tseng","doi":"10.1093/bioinformatics/btae696","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Biomarker detection plays a pivotal role in biomedical research. Integrating omics studies from multiple cohorts can enhance statistical power, accuracy and robustness of the detection results. However, existing methods for horizontally combining omics studies are mostly designed for two-class scenarios (e.g., cases versus controls) and are not directly applicable for studies with multi-class design (e.g., samples from multiple disease subtypes, treatments, tissues, or cell types).</p><p><strong>Results: </strong>We propose a statistical framework, namely Mutual Information Concordance Analysis (MICA), to detect biomarkers with concordant multi-class expression pattern across multiple omics studies from an information theoretic perspective. Our approach first detects biomarkers with concordant multi-class patterns across partial or all of the omics studies using a global test by mutual information. A post hoc analysis is then performed for each detected biomarkers and identify studies with concordant pattern. Extensive simulations demonstrate improved accuracy and successful false discovery rate control of MICA compared to an existing MCC method. The method is then applied to two practical scenarios: four tissues of mouse metabolism-related transcriptomic studies, and three sources of estrogen treatment expression profiles. Detected biomarkers by MICA show intriguing biological insights and functional annotations. Additionally, we implemented MICA for single-cell RNA-Seq data for tumor progression biomarkers, highlighting critical roles of ribosomal function in the tumor microenvironment of triple-negative breast cancer and underscoring the potential of MICA for detecting novel therapeutic targets.</p><p><strong>Availability: </strong>The source code is available on Figshare at https://doi.org/10.6084/m9.figshare.27635436. Additionally, the R package can be installed directly from GitHub at https://github.com/jianzou75/MICA.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: Biomarker detection plays a pivotal role in biomedical research. Integrating omics studies from multiple cohorts can enhance statistical power, accuracy and robustness of the detection results. However, existing methods for horizontally combining omics studies are mostly designed for two-class scenarios (e.g., cases versus controls) and are not directly applicable for studies with multi-class design (e.g., samples from multiple disease subtypes, treatments, tissues, or cell types).
Results: We propose a statistical framework, namely Mutual Information Concordance Analysis (MICA), to detect biomarkers with concordant multi-class expression pattern across multiple omics studies from an information theoretic perspective. Our approach first detects biomarkers with concordant multi-class patterns across partial or all of the omics studies using a global test by mutual information. A post hoc analysis is then performed for each detected biomarkers and identify studies with concordant pattern. Extensive simulations demonstrate improved accuracy and successful false discovery rate control of MICA compared to an existing MCC method. The method is then applied to two practical scenarios: four tissues of mouse metabolism-related transcriptomic studies, and three sources of estrogen treatment expression profiles. Detected biomarkers by MICA show intriguing biological insights and functional annotations. Additionally, we implemented MICA for single-cell RNA-Seq data for tumor progression biomarkers, highlighting critical roles of ribosomal function in the tumor microenvironment of triple-negative breast cancer and underscoring the potential of MICA for detecting novel therapeutic targets.
Availability: The source code is available on Figshare at https://doi.org/10.6084/m9.figshare.27635436. Additionally, the R package can be installed directly from GitHub at https://github.com/jianzou75/MICA.
Supplementary information: Supplementary data are available at Bioinformatics online.