Tumor-associated antigen prediction using a single-sample gene expression state inference algorithm.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2024-11-18 DOI:10.1016/j.crmeth.2024.100906
Xinpei Yi, Hongwei Zhao, Shunjie Hu, Liangqing Dong, Yongchao Dou, Jing Li, Qiang Gao, Bing Zhang
{"title":"Tumor-associated antigen prediction using a single-sample gene expression state inference algorithm.","authors":"Xinpei Yi, Hongwei Zhao, Shunjie Hu, Liangqing Dong, Yongchao Dou, Jing Li, Qiang Gao, Bing Zhang","doi":"10.1016/j.crmeth.2024.100906","DOIUrl":null,"url":null,"abstract":"<p><p>We developed a Bayesian-based algorithm to infer gene expression states in individual samples and incorporated it into a workflow to identify tumor-associated antigens (TAAs) across 33 cancer types using RNA sequencing (RNA-seq) data from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA). Our analysis identified 212 candidate TAAs, with 78 validated in independent RNA-seq datasets spanning seven cancer types. Eighteen of these TAAs were further corroborated by proteomics data, including 10 linked to liver cancer. We predicted that 38 peptides derived from these 10 TAAs would bind strongly to HLA-A02, the most common HLA allele. Experimental validation confirmed significant binding affinity and immunogenicity for 21 of these peptides. Notably, approximately 64% of liver tumors expressed one or more TAAs associated with these 21 peptides, positioning them as promising candidates for liver cancer therapies, such as peptide vaccines or T cell receptor (TCR)-T cell treatments. This study highlights the power of integrating computational and experimental approaches to discover TAAs for immunotherapy.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"4 11","pages":"100906"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We developed a Bayesian-based algorithm to infer gene expression states in individual samples and incorporated it into a workflow to identify tumor-associated antigens (TAAs) across 33 cancer types using RNA sequencing (RNA-seq) data from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA). Our analysis identified 212 candidate TAAs, with 78 validated in independent RNA-seq datasets spanning seven cancer types. Eighteen of these TAAs were further corroborated by proteomics data, including 10 linked to liver cancer. We predicted that 38 peptides derived from these 10 TAAs would bind strongly to HLA-A02, the most common HLA allele. Experimental validation confirmed significant binding affinity and immunogenicity for 21 of these peptides. Notably, approximately 64% of liver tumors expressed one or more TAAs associated with these 21 peptides, positioning them as promising candidates for liver cancer therapies, such as peptide vaccines or T cell receptor (TCR)-T cell treatments. This study highlights the power of integrating computational and experimental approaches to discover TAAs for immunotherapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用单样本基因表达状态推断算法预测肿瘤相关抗原。
我们开发了一种基于贝叶斯的算法来推断单个样本中的基因表达状态,并将其纳入工作流程,利用基因型-组织表达(GTEx)和癌症基因组图谱(TCGA)中的RNA测序(RNA-seq)数据来鉴定33种癌症类型中的肿瘤相关抗原(TAAs)。我们的分析确定了 212 个候选 TAAs,其中 78 个已在跨越 7 种癌症类型的独立 RNA-seq 数据集中得到验证。其中 18 个 TAAs 得到了蛋白质组学数据的进一步证实,包括 10 个与肝癌相关的 TAAs。我们预测,从这 10 个 TAAs 衍生出的 38 肽将与 HLA-A02 强结合,HLA-A02 是最常见的 HLA 等位基因。实验验证证实了其中 21 种肽具有明显的结合亲和力和免疫原性。值得注意的是,约64%的肝脏肿瘤表达了一种或多种与这21种肽相关的TAAs,这使它们成为肝癌疗法(如肽疫苗或T细胞受体(TCR)-T细胞疗法)的理想候选者。这项研究凸显了整合计算和实验方法来发现用于免疫疗法的TAAs的威力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
Generation of super-resolution images from barcode-based spatial transcriptomics by deep image prior. Accelerated protein retention expansion microscopy using microwave radiation. Intact protein barcoding enables one-shot identification of CRISPRi strains and their metabolic state. Patient-derived tumor organoid and fibroblast assembloid models for interrogation of the tumor microenvironment in esophageal adenocarcinoma. Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1