Effects of particle elongation on dense granular flows down a rough inclined plane.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Physical Review E Pub Date : 2024-10-01 DOI:10.1103/PhysRevE.110.044902
Jixiong Liu, Lu Jing, Thomas Pähtz, Yifei Cui, Gordon G D Zhou, Xudong Fu
{"title":"Effects of particle elongation on dense granular flows down a rough inclined plane.","authors":"Jixiong Liu, Lu Jing, Thomas Pähtz, Yifei Cui, Gordon G D Zhou, Xudong Fu","doi":"10.1103/PhysRevE.110.044902","DOIUrl":null,"url":null,"abstract":"<p><p>Granular materials in nature are nearly always nonspherical, but particle shape effects in granular flow remain largely elusive. This study uses discrete element method simulations to investigate how elongated particle shapes affect the mobility of dense granular flows down a rough incline. For a range of systematically varied particle length-to-diameter aspect ratios (AR), we run simulations with various flow thicknesses h and slope angles θ to extract the well-known h_{stop}(θ) curves (below which the flow ceases) and the Fr-h/h_{stop} relations following Pouliquen's approach, where Fr=u/sqrt[gh] is the Froude number, u is the mean flow velocity, and g is the gravitational acceleration. The slope β of the Fr-h/h_{stop} relations shows an intriguing S-shaped dependence on AR, with two plateaus at small and large AR, respectively, transitioning with a sharp increase. We understand this S-shaped dependence by examining statistics of particle orientation, alignment, and hindered rotation. We find that the rotation ability of weakly elongated particles (AR≲1.3) remains similar to spheres, leading to the first plateau in the β-AR relation, whereas the effects of particle orientation saturate beyond AR≈2.0, explaining the second plateau. An empirical sigmoidal function is proposed to capture this nonlinear dependence. The findings are expected to enhance our understanding of how particle shape affects the flow of granular materials from both the flow- and particle-scale perspectives.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-1","pages":"044902"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.044902","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Granular materials in nature are nearly always nonspherical, but particle shape effects in granular flow remain largely elusive. This study uses discrete element method simulations to investigate how elongated particle shapes affect the mobility of dense granular flows down a rough incline. For a range of systematically varied particle length-to-diameter aspect ratios (AR), we run simulations with various flow thicknesses h and slope angles θ to extract the well-known h_{stop}(θ) curves (below which the flow ceases) and the Fr-h/h_{stop} relations following Pouliquen's approach, where Fr=u/sqrt[gh] is the Froude number, u is the mean flow velocity, and g is the gravitational acceleration. The slope β of the Fr-h/h_{stop} relations shows an intriguing S-shaped dependence on AR, with two plateaus at small and large AR, respectively, transitioning with a sharp increase. We understand this S-shaped dependence by examining statistics of particle orientation, alignment, and hindered rotation. We find that the rotation ability of weakly elongated particles (AR≲1.3) remains similar to spheres, leading to the first plateau in the β-AR relation, whereas the effects of particle orientation saturate beyond AR≈2.0, explaining the second plateau. An empirical sigmoidal function is proposed to capture this nonlinear dependence. The findings are expected to enhance our understanding of how particle shape affects the flow of granular materials from both the flow- and particle-scale perspectives.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
颗粒伸长对沿粗糙斜面流下的致密颗粒流的影响。
自然界中的颗粒材料几乎总是非球形的,但颗粒流动中的颗粒形状效应在很大程度上仍然难以捉摸。本研究采用离散元法模拟研究细长颗粒形状如何影响高密度颗粒流沿粗糙斜面下行的流动性。对于一系列系统变化的颗粒长径比 (AR),我们用不同的流动厚度 h 和斜率角 θ 进行模拟,按照 Pouliquen 的方法提取出著名的 h_{stop}(θ)曲线(低于该曲线流动停止)和 Fr-h/h_{stop} 关系,其中 Fr=u/sqrt[gh] 是弗劳德数,u 是平均流速,g 是重力加速度。Fr-h/h_{stop} 关系的斜率 β 与 AR 呈有趣的 "S "型依赖关系,分别在小 AR 和大 AR 时出现两个高原,然后急剧上升。我们通过研究粒子取向、排列和受阻旋转的统计数据来理解这种 S 型依赖关系。我们发现,弱伸长粒子(AR≲1.3)的旋转能力与球体相似,导致了 β-AR 关系中的第一个高原,而粒子取向的影响在 AR≈2.0 之后趋于饱和,从而解释了第二个高原。为捕捉这种非线性依赖关系,提出了一个经验西格玛函数。这些发现有望加深我们对颗粒形状如何从流动和颗粒尺度两个角度影响颗粒材料流动的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Applications of a Rayleigh-Taylor model to direct-drive laser fusion. Geometric thermodynamics of collapse of gels. Comparison of the microcanonical population annealing algorithm with the Wang-Landau algorithm. Dense plasma opacity from excited states method. Harmonically trapped inertial run-and-tumble particle in one dimension.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1