Maximilian R Bailey, Dmitry A Fedosov, Federico Paratore, Fabio Grillo, Gerhard Gompper, Lucio Isa
{"title":"Low efficiency of Janus microswimmers as hydrodynamic mixers.","authors":"Maximilian R Bailey, Dmitry A Fedosov, Federico Paratore, Fabio Grillo, Gerhard Gompper, Lucio Isa","doi":"10.1103/PhysRevE.110.044601","DOIUrl":null,"url":null,"abstract":"<p><p>The generation of fluid flows by autophoretic microswimmers has been proposed as a mechanism to enhance mass transport and mixing at the micro- and nanoscale. Here, we experimentally investigate the ability of model 2D active baths of photocatalytic silica-titania Janus microspheres to enhance the diffusivity of tracer particles at different microswimmer densities below the onset of collective behavior. Inspired by the similarities between our experimental findings and previous results for biological microorganisms, we then model our Janus microswimmers using a general squirmer framework, specifically treating them as neutral squirmers. The numerical simulations faithfully capture our observations, offer an insight into the microscopic mechanism underpinning tracer transport, and allow us to expand the parameter space beyond our experimental system. We find strong evidence that near-field interactions dominate enhancements in tracer diffusivity in active Janus baths, leading to the identification of an operating window for enhanced tracer transport by chemical microswimmers based on scaling arguments. Based on this argumentation, we suggest that for many chemically active colloidal systems, hydrodynamics alone is likely to be insufficient to induce appreciable mixing of passive components with large diffusion coefficients.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-1","pages":"044601"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.044601","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
The generation of fluid flows by autophoretic microswimmers has been proposed as a mechanism to enhance mass transport and mixing at the micro- and nanoscale. Here, we experimentally investigate the ability of model 2D active baths of photocatalytic silica-titania Janus microspheres to enhance the diffusivity of tracer particles at different microswimmer densities below the onset of collective behavior. Inspired by the similarities between our experimental findings and previous results for biological microorganisms, we then model our Janus microswimmers using a general squirmer framework, specifically treating them as neutral squirmers. The numerical simulations faithfully capture our observations, offer an insight into the microscopic mechanism underpinning tracer transport, and allow us to expand the parameter space beyond our experimental system. We find strong evidence that near-field interactions dominate enhancements in tracer diffusivity in active Janus baths, leading to the identification of an operating window for enhanced tracer transport by chemical microswimmers based on scaling arguments. Based on this argumentation, we suggest that for many chemically active colloidal systems, hydrodynamics alone is likely to be insufficient to induce appreciable mixing of passive components with large diffusion coefficients.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.