Resetting by rescaling: Exact results for a diffusing particle in one dimension.

IF 2.4 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Physical Review E Pub Date : 2024-10-01 DOI:10.1103/PhysRevE.110.044142
Marco Biroli, Yannick Feld, Alexander K Hartmann, Satya N Majumdar, Grégory Schehr
{"title":"Resetting by rescaling: Exact results for a diffusing particle in one dimension.","authors":"Marco Biroli, Yannick Feld, Alexander K Hartmann, Satya N Majumdar, Grégory Schehr","doi":"10.1103/PhysRevE.110.044142","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we study a simple model of a diffusive particle on a line, undergoing a stochastic resetting with rate r, via rescaling its current position by a factor a, which can be either positive or negative. For |a|<1, the position distribution becomes stationary at long times and we compute this limiting distribution exactly for all |a|<1. This symmetric distribution has a Gaussian shape near its peak at x=0, but decays exponentially for large |x|. We also studied the mean first-passage time (MFPT) T(0) to a target located at a distance L from the initial position (the origin) of the particle. As a function of the initial position x, the MFPT T(x) satisfies a nonlocal second order differential equation and we have solved it explicitly for 0≤a<1. For -1<a≤0, we also solved it analytically but up to a constant factor κ whose value can be determined independently from numerical simulations. Our results show that, for all -1<a<1, the MFPT T(0) (starting from the origin) shows a minimum at r=r^{*}(a). However, the optimized MFPT T_{opt}(a) turns out to be a monotonically increasing function of a for -1<a<1. This demonstrates that, compared to the standard resetting to the origin (a=0), while the positive rescaling is not beneficial for the search of a target, the negative rescaling is. Thus resetting via rescaling followed by a reflection around the origin expedites the search of a target in one dimension.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-1","pages":"044142"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.044142","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a simple model of a diffusive particle on a line, undergoing a stochastic resetting with rate r, via rescaling its current position by a factor a, which can be either positive or negative. For |a|<1, the position distribution becomes stationary at long times and we compute this limiting distribution exactly for all |a|<1. This symmetric distribution has a Gaussian shape near its peak at x=0, but decays exponentially for large |x|. We also studied the mean first-passage time (MFPT) T(0) to a target located at a distance L from the initial position (the origin) of the particle. As a function of the initial position x, the MFPT T(x) satisfies a nonlocal second order differential equation and we have solved it explicitly for 0≤a<1. For -1

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过重新缩放进行重置:一维扩散粒子的精确结果
在本文中,我们研究了一个简单的模型,即直线上的一个扩散粒子,通过用系数 a(可以是正值或负值)重置其当前位置,以速率 r 进行随机重置。对于 |a
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Hamiltonian formulation for the motion of an active spheroidal particle suspended in laminar straight duct flow. Higher-order shortest paths in hypergraphs. Correlated internal waves in the nonlocal Ostrovsky equation. Inertial and confined dynamics of a constant-speed active particle in three dimensions. Computational study of erosion and deposition in transient granular flows on an erodible heap.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1