A. H. Lee, J. Lee, V. Leung, L. Larson, A. Nurmikko
{"title":"Patterned electrical brain stimulation by a wireless network of implantable microdevices","authors":"A. H. Lee, J. Lee, V. Leung, L. Larson, A. Nurmikko","doi":"10.1038/s41467-024-54542-1","DOIUrl":null,"url":null,"abstract":"<p>Transmitting meaningful information into brain circuits by electronic means is a challenge facing brain-computer interfaces. A key goal is to find an approach to inject spatially structured local current stimuli across swaths of sensory areas of the cortex. Here, we introduce a wireless approach to multipoint patterned electrical microstimulation by a spatially distributed epicortically implanted network of silicon microchips to target specific areas of the cortex. Each sub-millimeter-sized microchip harvests energy from an external radio-frequency source and converts this into biphasic current injected focally into tissue by a pair of integrated microwires. The amplitude, period, and repetition rate of injected current from each chip are controlled across the implant network by implementing a pre-scheduled, collision-free bitmap wireless communication protocol featuring sub-millisecond latency. As a proof-of-concept technology demonstration, a network of 30 wireless stimulators was chronically implanted into motor and sensory areas of the cortex in a freely moving rat for three months. We explored the effects of patterned intracortical electrical stimulation on trained animal behavior at average RF powers well below regulatory safety limits.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"57 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54542-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Transmitting meaningful information into brain circuits by electronic means is a challenge facing brain-computer interfaces. A key goal is to find an approach to inject spatially structured local current stimuli across swaths of sensory areas of the cortex. Here, we introduce a wireless approach to multipoint patterned electrical microstimulation by a spatially distributed epicortically implanted network of silicon microchips to target specific areas of the cortex. Each sub-millimeter-sized microchip harvests energy from an external radio-frequency source and converts this into biphasic current injected focally into tissue by a pair of integrated microwires. The amplitude, period, and repetition rate of injected current from each chip are controlled across the implant network by implementing a pre-scheduled, collision-free bitmap wireless communication protocol featuring sub-millisecond latency. As a proof-of-concept technology demonstration, a network of 30 wireless stimulators was chronically implanted into motor and sensory areas of the cortex in a freely moving rat for three months. We explored the effects of patterned intracortical electrical stimulation on trained animal behavior at average RF powers well below regulatory safety limits.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.