A new model for investigating the formation of interfacial transition zone in cement-based materials

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Cement and Concrete Research Pub Date : 2024-11-20 DOI:10.1016/j.cemconres.2024.107675
Xuan Gao, Qing-feng Liu, Yuxin Cai, Liang-yu Tong, Zesen Peng, Qing Xiang Xiong, Geert De Schutter
{"title":"A new model for investigating the formation of interfacial transition zone in cement-based materials","authors":"Xuan Gao, Qing-feng Liu, Yuxin Cai, Liang-yu Tong, Zesen Peng, Qing Xiang Xiong, Geert De Schutter","doi":"10.1016/j.cemconres.2024.107675","DOIUrl":null,"url":null,"abstract":"The interfacial transition zone (ITZ), located between aggregate and cement paste, has the features of high porosity, low unhydrated cement content, and enrichment of calcium hydroxide crystals (CH) and is often regarded as the weak link in cement-based materials. The present study is devoted to investigating the influence of multiple mechanisms or factors on ITZ formation, including the wall effect, ion transport, and aggregate features. A new modelling system is proposed to assess the interactions between these mechanisms or factors. The time-spatial distribution of hydration products and pores is studied by considering the reaction-diffusion-crystallization process of a non-uniformly distributed cement. Based on the developed model, the effects of individual mechanisms and their interactions on ITZ formation were clarified. The results indicated that the wall effect would determine the spatial distribution of cement and most hydration products due to the repulsion of aggregates on cement particles. The ion transport would influence the time evolution and redistribution of hydration products, which couples with the role of the wall effect. It was also found that aggregate features, including spacing and surface roughness, can affect the distribution of cement and the heterogeneity of cement-based materials, which works synergistically with the wall effect.","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"62 1","pages":""},"PeriodicalIF":10.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cemconres.2024.107675","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The interfacial transition zone (ITZ), located between aggregate and cement paste, has the features of high porosity, low unhydrated cement content, and enrichment of calcium hydroxide crystals (CH) and is often regarded as the weak link in cement-based materials. The present study is devoted to investigating the influence of multiple mechanisms or factors on ITZ formation, including the wall effect, ion transport, and aggregate features. A new modelling system is proposed to assess the interactions between these mechanisms or factors. The time-spatial distribution of hydration products and pores is studied by considering the reaction-diffusion-crystallization process of a non-uniformly distributed cement. Based on the developed model, the effects of individual mechanisms and their interactions on ITZ formation were clarified. The results indicated that the wall effect would determine the spatial distribution of cement and most hydration products due to the repulsion of aggregates on cement particles. The ion transport would influence the time evolution and redistribution of hydration products, which couples with the role of the wall effect. It was also found that aggregate features, including spacing and surface roughness, can affect the distribution of cement and the heterogeneity of cement-based materials, which works synergistically with the wall effect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究水泥基材料界面过渡区形成的新模型
界面过渡区(ITZ)位于集料和水泥浆之间,具有孔隙率高、未水化水泥含量低、氢氧化钙晶体(CH)富集等特点,通常被视为水泥基材料的薄弱环节。本研究致力于探讨多种机制或因素对 ITZ 形成的影响,包括壁效应、离子传输和骨料特征。本研究提出了一种新的建模系统来评估这些机制或因素之间的相互作用。通过考虑非均匀分布水泥的反应-扩散-结晶过程,研究了水化产物和孔隙的时间空间分布。根据所建立的模型,阐明了各个机制及其相互作用对 ITZ 形成的影响。结果表明,由于集料对水泥颗粒的排斥作用,壁效应将决定水泥和大多数水化产物的空间分布。离子传输会影响水化产物的时间演化和重新分布,这与壁效应的作用相耦合。研究还发现,集料特征(包括间距和表面粗糙度)会影响水泥的分布和水泥基材料的异质性,这与墙效应协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
期刊最新文献
Reactive transport modelling of autogenous self-healing in cracked concrete Modelling and experimental study on static yield stress evolution and structural build-up of cement paste in early stage of cement hydration A new model for investigating the formation of interfacial transition zone in cement-based materials Ca/Si-dependent size of silica nanoparticles derived from C-S-H at high water to solid ratio Expansion of irregularly shaped aggregate induced by alkali-silica reaction: Insights from numerical modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1