Electron-beam-evaporated NiOX for efficient and stable semi-transparent perovskite solar cells and modules†

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-11-21 DOI:10.1039/D4TA07138G
Junye Pan, Jiahui Chen, Bingxin Duan, Yuxi Zhang, Peiran Hou, Yanqing Zhu, Min Hu, Wangnan Li, Yi-Bing Cheng and Jianfeng Lu
{"title":"Electron-beam-evaporated NiOX for efficient and stable semi-transparent perovskite solar cells and modules†","authors":"Junye Pan, Jiahui Chen, Bingxin Duan, Yuxi Zhang, Peiran Hou, Yanqing Zhu, Min Hu, Wangnan Li, Yi-Bing Cheng and Jianfeng Lu","doi":"10.1039/D4TA07138G","DOIUrl":null,"url":null,"abstract":"<p >Semi-transparent perovskite solar cells (ST-PSCs) have tremendous potential as smart windows owing to their higher efficiency and visible transmittance. However, most previous ST-PSCs were fabricated by spin-coating methods with decomposable materials, which are not stable at higher temperature (&gt;60 °C), and the processes are not scalable. Herein, thermally stable ST-PSCs have been fabricated by using vacuum deposited CsPbBr<small><sub>3</sub></small> perovskite and electron-beam evaporation deposited NiO<small><sub><em>X</em></sub></small>. Furthermore, we further introduced an ultrathin P3HT buffer layer before depositing NiO<small><sub><em>X</em></sub></small> to avoid the damage of perovskite morphology by the electron beam. We found that this P3HT buffer layer not only protects the perovskite film from damage by the electron beam, but also facilitates the hole transfer from perovskite to NiO<small><sub><em>X</em></sub></small>. As a result, we achieved champion efficiencies of 7.1% for small area (active area = 0.16 cm<small><sup>2</sup></small>) solar cells and 5.5% for 5 cm × 5 cm mini-modules (active area = 10.0 cm<small><sup>2</sup></small>) with an AVT of 49.1%. Moreover, the non-encapsulated devices retained 93% of their initial performance after aging at 65 °C and a relative humidity (RH) of 55 ± 10% for 30 days.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 2","pages":" 1230-1239"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta07138g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Semi-transparent perovskite solar cells (ST-PSCs) have tremendous potential as smart windows owing to their higher efficiency and visible transmittance. However, most previous ST-PSCs were fabricated by spin-coating methods with decomposable materials, which are not stable at higher temperature (>60 °C), and the processes are not scalable. Herein, thermally stable ST-PSCs have been fabricated by using vacuum deposited CsPbBr3 perovskite and electron-beam evaporation deposited NiOX. Furthermore, we further introduced an ultrathin P3HT buffer layer before depositing NiOX to avoid the damage of perovskite morphology by the electron beam. We found that this P3HT buffer layer not only protects the perovskite film from damage by the electron beam, but also facilitates the hole transfer from perovskite to NiOX. As a result, we achieved champion efficiencies of 7.1% for small area (active area = 0.16 cm2) solar cells and 5.5% for 5 cm × 5 cm mini-modules (active area = 10.0 cm2) with an AVT of 49.1%. Moreover, the non-encapsulated devices retained 93% of their initial performance after aging at 65 °C and a relative humidity (RH) of 55 ± 10% for 30 days.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电子束蒸发 NiOX 用于高效稳定的半透明过氧化物太阳能电池和组件
半透明过氧化物太阳能电池(ST-PSCs)具有更高的效率和可见光透过率,因此作为智能窗户具有巨大的潜力。然而,以往大多数 ST-PSC 都是通过旋涂法与易损材料制成的,这些材料在较高温度(60 °C)下并不稳定,而且工艺不具可扩展性。在这里,我们利用真空沉积的铯硼铍包晶和电子束蒸发沉积的氧化镍,制造出了热稳定的 ST-PSC 。此外,在沉积 NiOX 之前,我们进一步引入了超薄 P3HT 缓冲层,以避免电子束对包晶形态的破坏。我们发现,这种 P3HT 缓冲层不仅能保护包晶薄膜免受电子束的破坏,还能促进空穴从包晶转移到 NiOX。因此,我们在小面积(有效面积 = 0.16 cm2)太阳能电池中实现了 7.1% 的冠军效率,在 5 cm × 5 cm 迷你模块(有效面积 = 10.0 cm2)中实现了 5.5% 的冠军效率,AVT 为 49.1%。此外,在 65 °C 和相对湿度 (RH) 为 55 ± 10% 的条件下老化 30 天后,非封装器件的初始性能保持了 93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Achieving ultra-high energy storage performance in (Bi0.5Na0.5)0.7Sr0.3TiO3-based relaxor ferroelectrics Lithium and oxygen engineered SiO0.5 materials for high performance lithium storage materials Bio-inspired polypyrrole nanowire arrays on melamine foam with high-performance photo/electro-thermal conversion for all-weather cleanup of crude oil High Yield Regeneration of 1,4-NAD(P)H by Selective Ad/De-sorption-Mediated Visible-Light Photocatalysis on a Noble-Metal-Free Catalyst† Enhanced Tin Halide Perovskite Solar Cells via Crystal Growth Control Using a Multifunctional Interfacial Modifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1